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INTRODUCTION  

activities: Fostering children‟s computational T\thinking through iPad integrated instruction.   

The advancement of communication technology and the emergence of technology-rich tools continuously 

transforms the way in which we live, work and learn (Voogt, Erstad, Dede, & Mishra, 2013). This rapid 

development of technology imposed new challenges to educators because of “fundamental changes in 

both what has to be learned and how this learning is to happen” (Voogt et al., 2013, p. 403), and increased 

attention to learning in Science, Technology, Engineering, and Mathematics (STEM) domains. President 

Obama identified STEM learning as a key for innovation and global leadership in the 21st century and 

established initiatives for STEM learning (White House Press Release, 2010). Individual subjects in 

STEM domains are not new and have been taught in schools (Sanders, 2009). However, they were not 

taught as interconnected practices as they are in the real world. Therefore, the growing attention to STEM 

learning focuses on the interconnected nature of each domain in STEM. The Next Generation Science 

Standards (NGSS) and Common Core State Standards (CCSS) address the interdependence of individual 

practice (Bybee, 2014). However, despite the growing demands for STEM education, studies indicate a 

shortage of student interest and an undersupply of a trained workforce (Hossain & Robinson, 2012; Voogt 

et al., 2013). The National Science Board (2010) has emphasized the significance of early exposure to 

STEM concepts in childhood education, but appropriate curriculum is still lacking pedagogically and 

developmentally. 

In response to growing demands for STEM learning in elementary classrooms, this chapter seeks to make 

STEM learning attractive to young students by proposing effective instructional strategies that develop 

computational thinking ability, as a core component of STEM learning. Computational thinking is often 

identified as part of a set of 21st century skills, which provides the underlying framework for the CCSS 

and NGSS (Dede, Mishra, & Voogt, 2013; Chris Dede, 2010; Voogt et al., 2013). “21st century skills” 

often refer to the competencies necessary for living and working in the 21st century (Voogt et al., 2013). 

Although the existing 21st century skill frameworks vary in details, reviews of such frameworks showed 

consensus on the importance of digital technology literacy (Dede et al., 2013; Dede, 2010; Einhorn, 

2012). Across the frameworks, digital literacy, problem solving, critical thinking and creativity are 

identified as skills essential in 21st century societies (Voogt et al., 2013). These skills combined consist of 

the core of “computational thinking” as defined by Wing (2006). This term was used to describe a set of 

thinking skills, habits, and approaches that are integral to solving problems and designing systems from a 

scientist‟s perspective. Computational thinking gives learners a framework to visualize and analyze 

problems (Einhorn, 2012). Wing (2006) defined computational thinking as “thinking involving solving 

problems, designing systems, and understanding human behavior, by drawing on the concepts 

fundamental to computer science” (p. 33). The gist of computational thinking is to think like a computer 

scientist when being confronted with a problem (Grover & Pea, 2013). Many scholars have argued that 

computational thinking skill is not limited to computer science but also a vital analytical skill in other 

forms of STEM learning (Wing, 2006). Moreover, early exposure to computational thinking helps 

students become more conscious about how to apply computational thinking to problem solving in the 



STEM domain (Yadav, Zhou, Mayfield, Hambrusch, & Korb, 2011). Therefore, educational efforts 

should be made to deepen students‟ understanding in core concepts of computational thinking for 

successful integrated STEM learning. 

This chapter elaborates on a classroom study that focuses on young children‟s acquisition of several types 

of computational thinking skills, by incorporating a touch-based tablet, iPads, in the physical activities in 

classrooms to teach mathematics content as well as programming perspectives that are fundamental to 

computational thinking skills. The authors suggest instructional strategies that are unique to mathematics 

classrooms and beneficial for children‟s development of programming skills as well as general cognitive 

abilities. 

Technology Integration in Classrooms 

With growing interest in incorporating technology into the classroom within the last two decades, a range 

of initiatives have taken place to provide teachers and schools with the tools and skills required for a 

seamless integration of learning technologies into teaching and learning. Some of these initiatives include 

software-focused technology integration, sample technology-based teaching and learning resources, as 

well as structured professional development courses (Harris, Mishra & Koehler, 2009). Unfortunately, the 

majority of earlier initiatives tended to be “technocentric” (Papert, 1987) as how these technological tools 

were implemented in the classroom was dependent on their specific affordances and constraints. The 

recent mass production of affordable touch-based mobile devices and tangible user interfaces (TUI), 

however, have created new conditions for learning and knowledge building (Scardamalia & Bereiter, 

2006), and provided improvements to the ways in which technology may be integrated more seamlessly 

into classroom curriculum and pedagogy. The fact that most of these new tools with tangible user 

interfaces (TUI) are portable and thus more mobile also helps to increase access to a wide variety of 

educational resources, including applications and games, for educational purposes. 

 

The adoption of mobile devices has changed the way of content production, which now emphasizes and 

enables creative meaning-making processes through multimodal interactions rather than being limited to 

passive consumption or learning. These affordances support users‟ internal knowledge construction while 

using iPads in open-ended ways such as creating virtual artifacts or projects (Resnick, Martin, Sargent, & 

Silverman, 1996). This type of learning originated constructionism (Papert, 1980), which pays particular 

attention to the ways that internal knowledge is constructed in the world through the use of digital tools. 

Moreover, a wide variety of available applications on iPads allows students to practice different types of 

cognitive strategies.  For instance, programming applications (e.g., Scratch, Hopscotch) provide an 

opportunity to master metacognition and computational thinking (Clements & Gullo, 1984). A core 

practice of computational thinking is tackling complex tasks by decomposing problems into step-by-step 

sub-goals (Wing, 2006). The key point of computational thinking is not about making people 

automatically think like computers, but rather about developing a set of mental models necessary to solve 

complex human problems effectively. 

 

The introduction of the iPad brought into practice a refined form of learning with increasing awareness 

about technology as a learning medium. Meaningful learning occurs in technology-based learning 

environments where there is an interplay of complex interactions among cognitive, motivational, 

affective, and social processes (Anderson & Labiere, 1998; Collins, Brown, & Newman, 1989; Derry & 

Lajoie, 1993; Jonassen & Land, 2000; Jonassen & Reeves, 1996; Lajoie, 2000; Pea, 1985; Shute & 

Psotka, 1996; Solomon, Perkins & Globerson, 1991; Wenger, 1987). The open-ended programming 

applications such as Scratch or Hopscotch enable constructive problem-solving practices through 

manipulation and interacting with virtual sprites.  

 

This chapter focuses on developing iPad-integrated curricula targeting underserved and underachieving 

young learners. Regarding low-level curricula and support (Hossain & Robinson, 2012; Voogt, Erstad, 



Dede, & Mishra, 2013) among underrepresented groups in early educational settings, this chapter pays 

special attention to the “learn-by-doing” approach to support concrete ways of thinking about abstract 

concepts, mathematics and programming. The iPad is a powerful carrier for new ways of thinking; 

however adding physical activities prior to iPad use helps learners reflect about their own thinking 

process in the real world by manipulating external objects and act-out by themselves. Therefore, the 

combination of pre-activities in the mathematics domain followed by programming on the iPads can 

allow active construction of computational thinking skills throughout the proposed instruction. Following 

reviews of the mobile infused initiatives, we discuss the integration of computational thinking in the 

mathematics and programming domains, and the use of the embodied approach in the design and delivery 

of classroom instruction in this regard. 

Computational Thinking 

Traditional technology-rich classrooms have not been accompanied by curricula emphasizing higher-

order computational thinking skills, but rather placed more emphasis on basic how-to skills lacking in 

creativity and relevance to everyday life (Jona, Wilensky, Trouille, Horn, Orton, Weintrop & Beheshti, 

2014).  To address these challenges, computational thinking needs to be embedded and integrated into 

traditional STEM courses in a way that promotes students‟ application of computational thinking 

strategies across multiple domains. In our approach, computational thinking is grounded in reality within 

familiar and age-appropriate contexts. Computational thinking that is introduced in this study includes set 

of cognitive skills applicable to a broad range of problem solving tasks. 

 

What Is It And Why Is It Important? 
Technology has provided us with a medium to develop solutions to problems we face in 21

st
 century and 

changed our ways of approaching problems. Thinking computationally not only includes thinking 

processes fundamental to computer science, but more importantly involves systematic and efficient 

processing of information and tasks (Lee, Martin, Denner, Coulter, Allan, Erickson & Werner, 2011). 

Wing (2011) underscored the role of an information-processing agent, which carries out computational 

thinking thought processes so that the solutions are represented in effective ways. Researchers 

consistently define computational thinking as thought processes involved in formulating problems and 

decomposing goals, as well as designing solutions as computational steps and algorithms (Aho, 2012; Lee 

et al., 2011; Wing, 2008, 2011). These core thought processes share traits with mathematical thinking and 

engineering thinking in many ways when approaching problems (Barr & Stephenson, 2011; Chang & 

Biswas, 2011). Mathematics and engineering concepts also overlap in the forms of algorithmic thinking, 

sequential thinking and design thinking skills that are fundamental to analytical thinking skills and that 

are fundamental to computational thinking. Bers (2010) employed Tangible K Robotics for teaching 

computer programming-algorithms or sequences of instructions that move robots by sensing and 

responding to their environments. Bers (2010) employed Tangible K Robotics for teaching computer 

programming-algorithms or sequences of instructions that move robots by sensing and responding to their 

environment. By engaging in the engineering design process within programming projects, students learn 

engineering thinking and scientific thinking. Additionally, there have been studies emphasizing the use of 

“computing as a medium” (diSessa, 2000) for exploring mathematics and science via programming 

environments (Bers, 2010; Clements & Battista, 1989; Feurzeig & Papert, 2011). Clements and Battista 

(1989) investigated the positive effects of computer programming in Logo in conceptualizing geometric 

objects among primary grade children. This work was rooted in Papert‟s research around Logo 

programming (Papert, 1980); which pioneered the idea of the computer being “a medium” or “a 

machine”, where children can develop procedural thinking through programming. Feurzeig and Papert 

(2011) revisited the first published paper on the Logo programming language and underscored the design 

of Logo that promotes a constructive vision on learning mathematics through the expression of solutions 

to problems via Logo programmable robot turtle. The extensive literature over the last three decades 

exploring computational thinking and its application to domain learning revealed essential elements of 

computational thinking. The following is a set of thinking skills selected and adapted from Barr and 



Stephenson (2011) and Grover and Pea (2013, p.39) to operationally define computational thinking in the 

present study. 

·    Abstraction and pattern generalization 

·    Problem decomposition 

·    Systematic processing of information 

·    Procedural and sequential thinking 

·    Efficiency and performance constraints 

·    Constructive thinking 

The characteristics discussed above are the skills required for formulating, identifying, implementing and 

testing possible solutions to problems combining knowledge and technology. As there is no common 

definition of computational thinking, it is even more challenging to develop a suitable one specific for K-

12 educational settings. Barr and Stephenson (2011) highlighted the necessity of developing a definition 

of computational thinking from a practical approach that can be embedded in K-12 classrooms (p50). In 

other words, focusing on what students would actually do to achieve defined criteria of computational 

thinking is important for designing classroom activities. One common factor among successful classroom 

activities is the constructive environments, in which learners are required to design solutions iteratively, 

simulate and reflect on the processes with feedback (Resnick, 2007). Barr and Stephenson (2011) also 

pointed that in solving an interesting problem, abstraction of thinking is one heuristic that can help 

students to attack the problem. Thus, activities should allow students to construct solutions to problems 

using different levels of abstraction and to design diverse ways of tackling problems.  

 

The next step is to choose appropriate curriculum and contexts where these activities can be embedded. 

There is extensive research conducted on the relationships between programming, computational thinking 

and mathematics (Fadjo, Hallman, Harris, & Black, 2009; Feurzeig & Papert, 2011; Jona et al., 2014; 

Voskoglou & Buckley, 2012). Carnegie Mellon Center for Computational Thinking
1
 described 

computational thinking as “thinking algorithmically and with the ability to apply mathematical concepts 

such as induction to develop more efficient, fair, and secure solutions”. Therefore, the authors aim at 

implementing computational thinking and its applications within existing mathematics curricula in the K-

12 classroom. As mentioned earlier, skills taught within traditional mathematics classrooms were found to 

overlap well with several important computational thinking skills, and seemed the most appropriate 

subject domain to be used in our study. Programming applications were adopted as tools to help students 

practice computational perspectives in the context of learning mathematical concepts through 

programming. The following sections review the relationships between computational thinking 

particularly in mathematics and programming domain.  

 
 

Computational Perspectives in Programming: Thinking About Thinking 
Programming is not simply about using computers. Grover and Pea (2013, p.40) highlighted that 

“programming is not only a fundamental skill of computer science and a key tool for supporting the 

cognitive tasks involved in computational thinking but a demonstration of computational competencies as 

well”. Programming enables the application of both explicit and tacit computational thinking skills by 

incorporating challenges that require higher order thinking (Einhorn, 2012). Programming is concerned 

with answering „How would I get a computer to solve this problem?‟, where the computer is a machine, 

and a human provides commands to the machine recursively. Answering the question: „How would I 

solve it?‟ fosters the identification of appropriate abstractions that lead to solutions for the computer 

(Wing, 2008). This is the essence of computational perspectives that is developed by Berland and 

Wilensky (2015) as a unique element within computational thinking. 

 

In other words, programming requires problem solving processes by the „necessarily explicit nature of 

programming‟, which make people to „articulate assumptions‟ and „precisely specify steps to their 

problem solving approach‟ (Papert, 1980; Pea & Kurland, 1984, p. 142). This process of solution 



construction requires analytic perspectives for solving problems that are unique and fundamental to 

computer programmers or scientists. The next concern is then “how to separate the cognitive activity of 

computational thinking from the action of merely working on a computer” (Dede, Mishra, & Voogt, 

2013, p. 4). As Dede, Mishra and Voogt (2013) argued, distinctive computational thinking skills is not 

about how to program a computer, but rather a cognitive approach to problem solving that uses skills as 

abstraction, decomposition, algorithms, and iterative processes (Yadav et al., 2011). Thus, this chapter 

seeks to explore computational thinking in terms of thinking like a computer programmer or a computer 

artist for domains that are not necessarily related to computer science. This is called computational 

perspectives, a concept coined by Berland and Wilensky (2015).  Berland and Wilensky (2015) used the 

term computational perspective to separate it from broader definition of computational thinking and to 

highlight that the perspective of thinking with the computer-as-a-tool is contextualized and constrained. 

Computational thinking is not limited to learning technical skills in computer science; rather it is the 

perspective that can be applied in a domain that is not necessarily computer science. The central argument 

of the chapter is to investigate design features of a learning environment that alters students‟ perspectives 

within a nontechnical domain to improve mathematics learning as well as programming knowledge in 

transfer. 

 

Continuing the line of argument of computational thinking, Clements and Gullo (1984) indicated that 

computer programming can make abstract concepts concrete by making children‟s thinking process more 

conscious and explicit and this leads to more effective learning. This „explicit nature of programming‟ is 

the key point that needs to be adopted in instructional design priming computational perspective. In other 

words, if the practice of computational perspective can be employed in other domains of learning outside 

of computer science, it could provide an effective setting for cognitive process instruction that focuses on 

how to think rather than what to think, which is fundamental to computational thinking (Clements & 

Gullo, 1984). Designing a learning environment that promotes explicit thinking processes is a key 

concern in deciding how to introduce programming within the context of K-3 curriculum and assist 

students in learning to program. Consequently, the next issue is to figure out what thinking practices or 

skills are particularly useful in the mathematics domain that can further benefit programming ability.  
 

Computational Thinking in Mathematics  
Mathematical ability is often discussed as a core factor predicting students‟ ability to learn computer 

programming (Pea & Kurland, 1984). Despite the theoretical relationship between mathematical ability 

and computer programming, early reviews often concluded that effects of programming on overall 

mathematics performance were not consistently strong (Clements, 1985). The negative result is 

attributable to the mere “exposure” to programming that failed to provide significant improvement 

(Clements, 1999). Efforts have been made to propose effective instruction for mathematics within the 

context of computer programming (Barr & Stephenson, 2011; Clements & Battista, 1989; Clements & 

Gullo, 1984; Feurzeig & Papert, 2011; Liu & Wang, 2010; Matarić, Koenig, & Feil-Seifer, 2007). These 

studies showed the relevance among mathematical, spatial problem solving abilities and computer 

programming which is supported by theoretical argument as well. By adding “concrete” instances of 

reasoning that is inherent in programming activities benefit learning abstract mathematical concepts and 

procedural thinking for problem solving (Rittle-Johnson, Siegler, & Alibali, 2001; Settle & Perkovic, 

2010; Voskoglou & Buckley, 2012). In order to explore the overlap in programming and mathematical 

concepts, the next section investigated the role of embodied approach as learning paradigm. 
 

The Embodied Approach 

Grounded cognition has been discussed as a variety of forms in cognitive science in its venerable history 

and continued evolving by taking new forms in robotics, cognitive ecology, cognitive neuroscience, and 

developmental psychology (Barsalou, 2008, 2010; Black, 2010). Grounded cognition reflects the 

assumption that the mental representations are shaped by multiple ways of grounding such as mental 



simulations, situated action, bodily states, or modality specific factors (Barsalou, 2008). In particular, 

embodied cognition emphasizes the connection between knowledge representation and the bodily states 

(Barsalou, 2008; Glenberg, 2008, 2010; Wilson & Golonka, 2013; Wilson, 2002). The theory of 

embodied cognition is rooted in the premise that body movement and how bodily activities are placed in a 

richly perceived physical world affect on cognitive processes deeply. This premise supports the findings 

that the embodied approach plays a critical role in learning higher-order and abstract concepts (Croft & 

Cruse, 2004; Gallese & Lakoff, 2005; Johnson & Lakoff, 2002; Lindgren, 2014; Lindgren & Johnson-

Glenberg, 2013). 

 

The following research studies provide evidence that the body serves as a significant resource for 

people‟s understanding of abstract concepts and language. The kinesthetic action grounded in concept 

leads to conscious thinking, perception, experiences, and deliberate uses of language for shaping the 

learning. The embodiment claim for language emphasized the contribution of action to cognition and 

meaning. Glenberg and Kaschak (2002) tested that sentence understanding worked faster for the 

participant who was asked to select congruent action to the literal direction of the target meaning. When 

participants were asked to judge the sensibility of a sentence for implied direction (e.g., toward or away) 

that are matched with the literal meaning (e.g., when you give vs. when the other gives you), they 

performed faster since it was not only perceptual qualities but also action that affected their 

decisions. Gibbs (2005) echoed the importance of metaphor in “mapping experiences of the body to help 

structure abstract ideas that are fundamental to how people speak and think” (p.12). The kinesthetic action 

grounded in concept leads to conscious thinking, perception, experiences, and deliberate uses of language 

for shaping learning. In a similar manner, the use of iPads allows students to apply acquired skills to 

virtual programmable manipulatives, which provides multimodal feedback and perceptual experiences 

(Paek, 2012). Concrete learning experiences from physical act-out and manipulation of real-world objects 

in pre-stages are then transferred into virtual environments on the iPads where students utilize different 

sensory modalities from offline activities. 

 

Another line of research by Glenberg, Gutierrez, Levin, Japuntich, and Kaschak (2004) demonstrated the 

effect of action as a facilitator for reading comprehension among second grade students. This was in line 

with Glenberg & Kaschak‟s work  (2002) on the use of the embodied instructional method to improve 

memory for a better comprehension of the text material. Students manipulating toy objects to act out 

stories demonstrated increased understanding and memory of the stories they read. Further, imagined 

manipulation of objects after acting out also showed increased acquisition and memory of the story 

(Glenberg et al., 2004). Glenberg et al (2004) concluded that both actual manipulation of toy objects and 

imagined manipulation resulted in better memory and comprehension compared to non-embodied 

students. Black (2007) also pointed out that imagining actions for another related story after acting out 

with toys enhances skill development in forming the imaginary world of the story.  In summary, Black 

(2010) specified three steps in a grounded cognition approach involved in these studies: 
1. Have a perceptually grounded experience 

2. Learn to imagine the perceptually grounded experience 

3. Imagine the experience when learning from symbolic materials (p. 46) 

Outside of the cognitive linguistics field, evidence has also been provided in the field of cognitive and 

developmental psychology that supports the embodied cognition approach. Research studies in cognitive 

psychology have provided support for the effects of sensory-motor engagement in diverse tasks with 

perception, memory, knowledge, thought and language (Black, 2010; Glenberg, 2008; Glenberg et al., 

2004; A. D. Wilson & Golonka, 2013; M. Wilson, 2002). Similar evidence can be found in Barsalou‟s 

research (2010), where he found that manipulating different levels of bodily engagement could causally 

affect higher cognitive processes such as evaluation, decision-making and attribution (Barsalou, 

Niedenthal, Barbey, & Ruppert, 2003; Niedenthal, Barsalou, Winkielman, Krauth-Gruber, & Ric, 2005). 

In developmental psychology, Smith and Gasser (2005) proposed the idea that intelligence emerges 



within a physically, socially and linguistically grounded environment where sensorimotor activities play 

central roles in the development. 

 

Most importantly, these research studies prove the case that cognition is grounded in the sensorimotor 

activity of our bodies, thus expanding the body‟s physical interaction within conceptually grounded 

environments that could become “fertile soil onto which we can lay the seeds of new learning” (Lindgren, 

2014, p. 40). Therefore, the embodied approach provides valuable resources for learning symbolic 

concepts or new literacies that are unfamiliar to young learners, such as mathematics, science and 

technology literacies. An embodied perspective promotes a conceptualization of mathematics, and in fact 

all STEM content, as grounded and situated in the spatial–dynamical and somatic experiences of the 

person who is engaging in well-designed activities (Abrahamson & Lindgren, 2014). Thus, the current 

study design reflects previous research findings on the effectiveness of embodied instruction, and 

employs act-outs and a manipulation of action within the learning environment.  

 

Connection Between Embodiment And Mathematics 
In elementary education, experiential hands-on education has been in use to promote learning new 

materials or even abstract concepts by forming real-world meaning and increasing motivation. Hands-on 

experience can bridge the disconnection between subject areas and contextual experience within learners. 

Especially for younger learners, mathematical practice tends towards about learning and applying 

arbitrary symbolic inscriptions that are not necessarily meaningful to them. Even during practice with 

mathematical formulae, students often fail to solve same conceptual concept in a different context or 

apply it in other contexts. The problem stems from the absence of perceptually grounded or embodied 

cognition that fosters a deeper level of understanding. 

 

Fischer, Moeller, Bientzle, Cress and Nuerk (2013) employed the concept of embodiment in learning 

number line sense by „moving along the number line‟ using a sensorimotor training concept. Fischer et al. 

(2013) incorporated systematic full-body movement allowing for an embodied experience of the trained 

numerical concept on a physical number line. Their results support theoretical arguments of the embodied 

approach and other research studies by showing pronounced training effects on children‟s number line 

estimation following the embodied training. Moreover, the embodied group demonstrated transfer effects 

in counting ability as compared to the control group. Incorporating a physical number line analogous to 

students‟ mental number line and a systematic full-body experience corresponding to their mental 

processes resulted in significant improvements in number sense among young learners (Link, Moeller, 

Huber, Fischer, & Nuerk, 2013).    

 

Therefore, what appears important for effective mobile learning is the structural and analogical 

relationships between the subject matter and the physical context of where learning is taking place. Segal 

(2011) had emphasized that the conceptual mapping of actions congruent with learned concepts support 

thinking and learning. The current learning design is informed by the studies discussed above, and 

incorporates these ideas through physical layouts on the floor to help students learn geometric shapes. The 

conceptually congruent environment for learning geometric shapes is realized by providing a spatial grid 

layout on the floor that allows the incorporation of bodily-movement within the learning activities.  

 

 

Computational Perspectives in Embodied Activities 

Conceptual Congruency In Embodied Simulation 
STEM learning in elementary educational settings ideally focuses on learner-centered and constructionist 

approaches for designing motivating and engaging activities. Embodied cognition recognizes the 

importance of learners‟ participation through active interactions with a physical world, where abstract 

concepts may be constructed through concrete sensorimotor experiences (Abrahamson & Howison, 2010; 



Abrahamson & Trninic, 2015; Bamberger & DiSessa, 2003). When physical interactions are grounded in 

conceptual reasoning, the conceptual metaphor becomes cognitive substrate for learning abstract concepts 

(Lakoff & Johnson, 1999; Segal, 2011).  

 

The goal of this study is to improve students‟ problem-solving skills in programming tasks -  a primary 

measure of computational thinking skills (Perkovic & Settle, 2010; Wing, 2008) - by designing embodied 

unplugged activities in the domain of mathematics. The following sections discuss how these pre-

activities are grounded in the embodied approach for promoting successful use of tablets. How 

programming concepts are intertwined with embodied activities in mathematics is discussed in the next 

section, together with explanation of how the core concepts of programming are incorporated into the 

learning activities. 

 

A number of studies have shown the necessity of physical interactions grounded in conceptual reasoning, 

which will become internalized as simulated actions. Abrahamson and Lindgren (2014) quoted Piaget‟s 

(1968) argument that action-oriented mental processes delivered in concrete situations supports the 

development of mathematical or scientific ideas.  Similarly, Lakoff and Johnson (1999) explained how 

conceptual metaphors emerge from concrete sensorimotor experience that is grounded in image schemas. 

Therefore, providing physical mathematical representations where learners can act out solutions is key to 

promoting physical interaction and concrete simulation. The math content topic targeted in this study is 

on 2-dimensional geometric shapes, their features and other related concepts. Employing the embodied 

perspective in mathematics learning design, students are moved their bodies to draw 2-dimensional 

geometric shapes based on their knowledge of these shapes‟ unique characteristics. However, this still 

lacks the integration of the computational perspective, a core concept in computational thinking. The next 

question is how to combine computational perspectives into the embodied activities on2-dimensional 

geometric learning.   

 

In order to address the question, we reviewed the various types of embodiment studied in the context of 

programming and computational literacy. Researchers in recent studies, such as Fadjo (2012), proposed a 

conceptual framework of embodiment in formal educational settings, called Instructional Embodiment, 

within the STEM domain (Black, Segal, Vitale, & Fadjo, 2012; Fadjo, Lu, & Black, 2009), which 

integrates both physical and imagined movement of pre-defined content (Black et al., 2012; Fadjo et al., 

2009). The main categories in Instructional Embodiment are physical and imagined. Within physical 

embodiment, there are four forms of Instructional Embodiment: Direct, Surrogate, Augmented and 

Gestural embodiment (Fadjo, 2012).  

 

Direct Embodiment is the physical enactment of pre-defined scenarios or sequences that contains explicit 

and implicit cues for movement (Fadjo, 2012). The application of direct embodiment in our study is the 

form of bodily movement involved in completing the given geometry problem solving.  Surrogate 

Embodiment is a type of physical enactment where the movement of an external surrogate is controlled 

and manipulated by the learner (Fadjo, 2012). Manipulating a surrogate resembles the concept of 

computer programming as the cognitive process is analogous to the processes involved when 

programming virtual sprites. Direct embodiment has shown significant effects on developing 

programming skills, especially conditional sequences, while surrogate embodiment has been shown to 

provide a unique opportunity for the instruction of arithmetic topics during video game design (Fadjo et 

al., 2009). There is thus a conceptual comparison that could be made between surrogate embodiment and 

computational perspectives, since manipulating a surrogate during the surrogate embodiment process 

resembles the thought process of a programmer during programming. 

 

In our study, direct embodiment was employed as a form of physical role-play that involved students‟ 

own bodily movement. Direct embodiment does not increase the likelihood of displaying each step to 

reach solutions, but rather allows students to implement solutions by moving their own bodies. Operating 



a surrogate, on the other hand, requires students to display explicit knowledge in the form of articulation 

in order to provide commands to move a surrogate. Computational perspective, which reflects conceptual 

congruency during embodiment, is thus adopted when a surrogate is employed within an embodied 

activity, whereas direct body movement does not provide opportunities to practice the perspectives from 

programmer or computer scientist. Based on embodied cognition theories and research in learning, this 

study investigates the effects of conceptually congruent embodiment on young children‟s learning. 

Moreover, learning concepts are extended into thinking skills, specifically computational thinking and 

problem-solving skills in geometry learning and programming domain. 

INCORPORATING TOUCH-BASED TABLET INTO ELEMENTARY CURRICULUM 

Addressing Issues in Tablet Integrated Learning  

Mobile learning has been researched to some extent in recent years, with an emphasis on the mobility of 

handheld devices such as mobile phones and PDAs. It was conceived as extension of e-learning, which 

provides access to networks when computer access was restricted. (Motiwalla, 2007). Although in 

aforementioned cases, mobile learning tend to be used as a replacement for a physical learning 

environment delivering standalone instruction, several studies noted advantages of integrating the device 

into physical environments for school subjects. Other research showed how virtual information delivered 

via handheld devices provides authentic learning experiences. For instance, students conducted scientific 

investigations on local environmental problems (Squire & Klopfer, 2007) and evaluated regional 

historical information (Schrier, 2006) using location-aware technology (e.g. use of RFID chips, GPS) and 

handheld devices. Although such studies were implemented outside classrooms, they demonstrated the 

potentials of using mobile devices for academic subjects. By incorporating information provided by 

handheld devices into their physical surroundings and activities, students can relate the information to the 

real world problems in meaningful way. Given their developmental stage, incorporating the use of 

technology as a tool into physical activities are particularly effective for children‟s learning (Price & 

Rogers, 2004).  

 

Young children in the early learning stages from K-3 have yet to fully develop fine motor skills necessary 

to manipulate small objects to operate technology, and thus may experience issues operating and 

controlling conventional input devices such as mouse and keyboards for computers or keypads of a 

mobile phone, such that they would not be able to benefit fully from the technology. A study by 

Lauricella, Barr, and Calvert (2009), for example, showed that young children lack proficiency in 

pointing and clicking with a computer mouse. However, touch-based tablets such as iPads allow children 

to perform various tasks using its touch interface, which is intuitive and easy to use. Moreover, Paek 

(2012) reported that children using a touch-interface had better learning outcomes than children using 

desktop computers when playing a math game. Therefore, touch-based portable devices such as iPads 

have greater potential for classroom applications with young children in early elementary settings.  

 

While programming skills have been taught traditionally to older students at the middle and high school 

levels, there has been a shift to open this domain to young children. To better customize the learning of 

basic programming skills for younger children, the DevTech research group at Tufts University and 

MIT‟s Lifelong Kindergarten developed Scratch Jr., an open-ended block-based version of the popular 

Scratch programming app. Through this app, the researchers attempted to address the challenges 

encountered by young children when navigating text-heavy programming environments, by creating a 

more intuitive programming environment based on graphics instead of text. In our study, we make use of 

Hopscotch, a similar iPad application that teaches foundational programming skills to young children 

aged five to seven using a graphical block-based programming language. In a similar manner to Scratch 

Jr., Hopscotch attempts to address the needs of children in the younger age group by creating a simpler 

and graphically intuitive version of a programming application. The Hopscotch application provides a 



combination of tangible and graphical programming language tools that would appeal more to young 

children. In the Hopscotch application, children snap a collection of graphical “programming blocks” to 

create a stackable programming structure. 

 

When the iPad, a touch-based smart device, first appeared in the market, it received a lot of attention as 

„next-generational educational technology‟ (Murray & Olcese, 2011). Several states such as New York 

and Virginia equipped classrooms with iPads across different grade levels, for various uses such as  e-

textbooks (Hu, 2012). However, equipping students with 21
st
 century devices do not necessarily promote 

the development of 21
st
 century skills in the classroom. Despite the promises of digital tools for learning, 

children are only on the receiving end of operating media; they do not necessarily know how to optimally 

use media creatively or critically (Rideout, Foehr & Roberts, 2010). Even in the 20th century, 

innovative technology (e.g. Skinner‟s Programmed Instruction, Papert‟s Mindstorms) had been 

introduced into educational settings with an expectation that this new technology would change the 

educational system (Sawyer, 2006). However, these technological software and equipment alone were not 

enough to prepare students for the 21st century. The number of classrooms with computers and networks 

has been increasing in the last decade, but equipment alone does not lead to educational change 

(Scardamalia, 2001; Wenglinsky, 2005). Changes at the classroom level occur around curriculum – 

through “curriculum materials, teaching practices, and beliefs or understandings about the curriculum and 

learning practices” (Fullan, 2007, p.85). Given that the Common Core Standards (CCS) and Next 

Generation Science Standards (NGSS) emphasize the interdisciplinary nature of the STEM domains, this 

chapter seeks to weave fundamental 21
st
 century cognitive skills into existing math curricula, using an 

iPad application as a scaffolding tool. 

 

STUDY DESIGN TO TACKLE CHALLENGES IN ADOPTING TABLETS IN 

EDUCATION 

Goal of the Study  

The study proposes an interdisciplinary STEM curriculum incorporating touch-based tablets to prepare 

young students for the 21st century society. A gap still exists between conceptual definitions of 

computational thinking in STEM areas and how it is applied in classrooms. Several studies confirmed that 

technology integration in the classroom has failed to take into account the new conditions for the 

development of unique skills required for computer literacy, in what is referred to as computational 

thinking ability (Hatlevik, Ottestad, Skaug, Kløvstad, & Berge, 2009; Scardamalia & Bereiter, 2006). 

Lankshear and Knobel (2006) emphasized the importance of designing educational contexts in which 

technology literacy and fluency can be successfully embedded. This study is thus designed to embed 

computational perspectives into existing math curriculum to develop computational thinking skills with 

the use of a mobile programming application. In order to examine how the new instructional approach 

incorporating an iPad as a cognitive tool affects children‟s STEM learning, an experimental study was 

conducted in the second grade elementary classrooms. Study design, procedures and results are discussed 

in the following sections. 

 

Study Design and Procedures 

The purpose of this study is to examine the effects of an instructional method that incorporates iPad 

applications in the development of children‟s early computational thinking skills, within the domains of 

mathematics and programming. Children were assigned to three different conditions: the Surrogate 

Embodiment (SE) condition, the Direct Embodiment (DE) condition, and the Control condition. Before 

they build programming code to solve given math problems via Hopscotch, children were engaged in 



three different pre-activities depending on the condition as described in Table 1. Children in the SE 

condition gave commands to their partner to solve the problem, and partners moved their bodies around a 

grid layout on the floor in order to create a solution. Children in the DE condition moved their own bodies 

to demonstrate the step-by-step solution. Children in the control condition were given a worksheet on 

which they had to draw their solution. All children received a handout that describes the differentiating 

features of various 2D geometric shapes (e.g. degree of angles and length of side) as a reference for the 

problem they were trying to solve.  

 

Given the various perspectives and evolving definitions of computational thinking, a set of skills is 

included in defining computational thinking that are applicable to this study. They were adapted from the 

definition of the International Society for Technology in Education and Computer Science Teacher 

Association
2
 to fit our study objectives: 

 

1.  Formulating problems in a way to use a computer to solve: Commanding 

2.  Logically organizing the data: Procedural and sequential steps 

3.  Implementing possible solutions: Programming fluency and efficiency 

4.  Transferring problem solving process to a wide variety of problems: transfer mathematics 

learning into programming task 

 

This study proposes embodied activities as a way to take computational perspectives in the domain of 

mathematics and programming. Students in the SE condition solve mathematics problems from a 

computer programmer‟s perspective by taking the role of a commander who commands the surrogate by 

giving procedural and sequential steps to reach solutions. This is what the SE group executed during the 

intervention when given mathematics problems. While students in SE group embody themselves as 

programmers, the DE group engages their own body movement to enact steps to solve 

problems. Therefore, the critical difference between SE and DE is the presence of CPP engaged in bodily 

activities. The intervention design is described in table 1 and the procedure of the study is described in 

table 2.  
 

Table 1. Details of conditions 

Intervention Details of each group 

Surrogate Embodiment Group (SE) 

-Presence of CPP and embodied simulation 

(Enact the role of commander to practice 

computational perspectives) 

Students manipulate a surrogate to perform solutions for given 

geometry problems.  

Students provide step-by-step commands to the surrogate to draw a 

given 2D shape based on its basic features.  

Direct Embodiment Group (DE) 

-Absence of CPP and direct embodied 

activity 

(Directly engaged bodily movement without 

a commander role ) 

Students move their body to draw given geometric shapes. 

Students do not need to command a surrogate, but perform a 

solution by moving their own body. 

Control 

(None of above) 

Students study and draw solutions on paper handouts.  

 



Table 2. Study procedures 

 Week 1 

Pre-activity 

stage-1  

Week 2 

Coding-1 

Week 3 

Pre-activity 

stage -2 

Week 4 

Coding-2 

Week 5-6 

Advanced Coding 

Task Drawing a 

rectangle and a 

square 

Programming a 

virtual character 

to move and draw 

a rectangle/square  

Drawing an 

equilateral 

triangle 

Programming a 

virtual character to 

move for drawing an 

equilateral triangle 

Programming a 

virtual character to 

draw complicated 

shapes such as 

pentagon or 

hexagon or other 

shapes 

SE 

group 

Students 

command a 

surrogate 

(teacher) to 

move and leave a 

trail for drawing 

a 

rectangle/square 

on the grid 

drawn on the 

floor 

All 3 groups are 

asked to do 

programming on 

Hopscotch to 

make virtual 

character draw a 

rectangle/square. 

Students 

command a 

surrogate to 

move and create 

a triangle on the 

floor 

All 3 groups are 

asked to do 

programming on 

Hopscotch to draw 

an equilateral 

triangle by 

commanding a 

virtual character 

Students create 

programming to 

draw complicated 

shapes or multiple 

shapes in one 

screen. All 3 

groups are asked to 

create 

programming for 

either hexagon or 

pentagon 

DE 

group 

Students move 

their own body 

to draw a 

rectangle/square 

Students move 

their own body 

to create a 

triangle on the 

floor 

Control 

group 

Students read 

hand-out and 

draw shapes on 

the paper 

Students read 

hand-out and 

draw shapes on 

the paper 

 

Programming Activity Using Hopscotch 

After the pre-activity, students were engaged in programming activities to create the shapes they learned 

in the pre-activity, using the Hopscotch app on the iPad,  (http://www.gethopscotch.com/) which is a 

visual block-based programming application for iPads. This app was used to help encourage and identify 

whether there had been a transfer of what students learned through pre-activities into programming tasks. 

The Hopscotch app is similar to Scratch (http://scratch.mit.edu), which was built based on the Logo 

programming framework, and designed to support simple programming (Papert, 1980). In Hopscotch, 

characters can be created and manipulated through a certain algorithm, which is created using coding 

blocks (Amer & Ibrahim, 2014). These characters act according to either specific built-in scenarios or in 

reaction to the algorithm created by users. In order to code in Hopscotch, a user drags a block from a 

palette of command blocks onto the stage, where a series of blocks can be snapped together. By hitting a 

http://www.gethopscotch.com/
http://scratch.mit.edu/


play button, the screen changes to show the movement of characters based on the code, or algorithm, built 

with sequenced graphical blocks.  

In the programming activity, children were asked to program a character move along a path based on the 

geometric shapes they studied in the pre-activity. The children did not receive any specific instruction 

about meaning of each command block, but they were taught how to move command blocks into 

sequences of instruction, and how to execute their codes. They revised their code until they were able to 

create the given shapes without any explicit help or feedback from the experimenters.  

Figure 1. A screenshot of Hopscotch programming stage for creating a square. 

 

Figure 2. A screenshot of Hopscotch result page after creating programming blocks. 

 

After the children learned basic geometric shapes (e.g. triangles and rectangles), they proceeded to  an 

advanced programming session where they had to code the paths using more complex geometric shapes 

(e.g. pentagons and hexagons). The children did not act on these shapes, because those were not used in 

the pre-activity. Upon completion of all the programming activities, their cognitive skills, learning gains 

in geometry, and programming fluency were measured. 

 



Participants  

The study was conducted with 39 2nd grade students (25 males, 14 females) during a coding afterschool 

program in a New York City public school. The data obtained from five students were excluded from 

analysis due to frequent absences. The intervention was conducted for 10 weeks from March to May in 

2015. This ethnically diverse school consists of 25% Hispanic, 39% Black, 20% White, and 6% Asian 

students 

 

 

Measures  

Cognitive Skills  
To assess students‟ abilities to reason about and generalize a solution for realistic situations, the authors 

administered the Test of Problem Solving-3 (TOPS-3: Elementary; Bowers, Huisingh, & LoGiudice, 

2005), a commonly used test to measure students‟ thinking and reasoning skills. The study utilized three 

pictured situations from the TOPS-3 battery, with a total of 14 questions. Among the cognitive skills 

measured by the TOPS-3 test, we selected problem solving, inference, predicting, determination of 

causes, and sequencing skills as skills that are most relevant to this study. Children verbally responded to 

the standard set of questions that were read aloud by the experimenter. Tests were scored using scale 

norms from the scoring manual. Responses categorized under each thinking skill were summed to form 

subscales. Higher scores indicated stronger abilities to solve problems, infer, predict, determine causes, 

and understanding sequence.  
 

Learning in Mathematics and Programming  
The authors developed tests to measure learning outcomes in geometry and programming. Geometry test 

was developed based on the geometric thinking level theory (Van Hiele, 1986), which consists of four 

levels: recognition, visual association, description/analysis, and abstraction/relation. The test items were 

selected from Chang, Sung, and Lin (2006) measurement, which originally had 20 multiple-choice 

questions. 10 items were selected for 2
nd

 graders based on the their school curriculum. 

To measure students‟ programming fluency, a paper-based programming skill test was developed. Testing 

items were developed based on three assessment criteria in computer science education that Meerbaum-

Salant, Armoni, and Ben-Ari (2013) developed based on the Bloom‟s taxonomy. 

1. Understanding: The ability to summarize, explain, exemplify, classify, and compare CS concepts, 

including programming constructs; 

2. Applying: The ability to execute programs or algorithms, to track them, and to recognize their 

goals; 

3. Creating: The ability to plan and produce programs or algorithms. (p. 245) 

The above criteria were evaluated by asking students to choose correct programming results, create 

effective codes, detect patterns, and apply the algorithms in the paper-based programming skill test. 

 

Results 

The results of the study measures were analyzed to identify the effects of different types of iPad-

integrated instructional methods: Surrogate Embodied instruction, Direct Embodied instruction, and non-

embodied instruction. Learning outcomes were measured in two domains: mathematics (geometric 

knowledge) and programming. 

 

Cognitive Skills: Result from TOPS-3 



The scores from the TOPS-3 measure were compared between the Control and Embodiment groups (EM; 

Combination of SE and DE), and further analysis was conducted within the embodiment groups. Given 

the cognitive and behavioral nature of the embodied instructional methods, we expected improvements in 

participants‟ abilities on critical thinking skills. We analyzed the TOPS-3 test measure results using the 

Mann-Whitney test, and found that the EM group does not show significant gains compared to Control 

group. Nevertheless, the SE group scored slightly higher on problem solving (EM Mdn=6.0, Control 

Mdn=5.5), sequential skills (EM Mdn=5.0, Control Mdn=3.5), and determination of causes (EM 

Mdn=4.0, Control Mdn=3.5). 

To better understand the effects of different types of embodied instruction in the development and 

practice of computational thinking skills, further analysis between the SE group and the DE group were 

conducted. Examination of the TOPS-3 test revealed that the SE group performed better than DE group in 

problem solving (SE Mdn=6.0, DE Mdn=5.0), U = 13.0, p = .027, r = .57. sequence (SE Mdn=5.5, DE 

Mdn=4.0), U = 13.5, p = .027, r = .53., determine causes (SE Mdn=5.0, DE Mdn=3.0), U = 13.0, p = .027, 

r = .55. On the other hand, the DE group showed more significant improvement in skills associated with 

creating solutions for problems by drawing logical reason for a given aspect, evaluating alternative 

solutions, and predicting anticipated future. 

 

Learning in Mathematics and Programming 
The relationships between the three groups of instructional methods were analyzed using regression. A 

one way ANOVA conducted for the geometry test and programming test measures shows significant 

differences between groups. Table 2 reports the mean scores for each group. 

 
Table 3. Mean of groups for geometry and programming test score 

 
Direct Embodiment 

group 

Surrogate Embodiment 

group 
Control Total 

 M SD M SD M SD M SD 

Geometry 7.33 1.58 7.43 1.51 5.38 1.98 6.48 1.97 

Programming 7.90 3.45 10.14 6.18 5.35 2.83 7.60 4.87 

 
For the geometry test measure, the total mean score differences are significant, F (2, 26) = 4.578, p=.02. 

A post-hoc test confirms that the mean difference between the DE and Control groups is significant with 

p=.044.  On the other hand, the differences between the SE and Control groups is only marginally 

significant with p=.051. However, when analyzing the scores of higher level testing items for abstraction 

within the geometry test measure, the DE group shows significantly higher mean scores (M=2.57, 

SD=0.53) as compared to the Control group (M=1.46, SD=0.776) with p=.017.  When examining the 

lower level testing items in the geometric knowledge test, which assessed recognition and visual 

association, the DE group (M=5.55, SD=0.881) was shown to be significantly different from the Control 

group (M=3.92, SD=1.382) with p= .017. 

 

When it comes to the coding test, significant differences are found, F(2, 26) = 3.383, p=.04. A post-hoc 

test shows significantly higher mean scores for the SE group (M=7.90, SD=3.45), as compared to the 

Control group (M=5.35, SD=2.83) with p= .039. On the other hand, the DE group failed to show 

significant differences from Control group. 

 

DISCUSSION 



Many cognitive scientists have studied how bodily action affects conceptual development and proposed 

models to explain how learning abstract concepts benefits from concrete embodied experiences. As 

discussed earlier, it has been argued that STEM disciplines requires analytical and computational 

perspectives, and the embodied approach to help create learning environments that encourage learners 

toward these perspectives (Abrahamson & Lindgren, 2014). This study design incorporates embodied 

activities into the practice of computational perspectives in learning geometric concepts. Through the 

implementation of various embodied intervention activities followed by programming practice on the 

iPads, students are motivated to execute problem solving skills specific to computer programming 

contexts. Students in the surrogate-embodiment condition practiced computational perspectives through 

the use of a surrogate during the pre-activities. The presence of a surrogate in the SE group promotes 

analytical thinking processes that are unique to computational perspectives such as commanding, 

procedural and sequential thinking strategies. This study examines if such explicit efforts at the pre-

activity stage maximizes the learning process using Hopscotch to improve student understanding of both 

mathematics and programming concepts. The overall results demonstrated promising effects of 

instructional methods involving surrogate embodiment over methods that include direct or no 

embodiment at all. 

 

Overall, student groups engaged in embodied activity report higher mean scores in geometric learning, 

programming and the TOPS-3 test measures as compared to the control group. The TOPS-3 test fails to 

show significant differences between the embodied and control groups; however when comparing 

between the SE and DE groups, the group that experienced surrogate embodiment activities (thus 

involving CPP) shows significantly higher performance in the TOPS-3 test measure, that includes 

problem-solving, sequential thinking and determining causes. This finding implies that when iPad use is 

accompanied by embodied activity with CPP (as in the SE group), students gain opportunities to practice 

skills that are fundamental to computational thinking. As the core idea of computational thinking is to 

tackle complex tasks by decomposing the task into sequential steps to reach a solution (Wing, 2006), 

students who practice computational perspectives in an embodied activity followed by practicing on the 

iPad seemed to have attained computational skills such as problem-solving, sequential thinking and error 

correction by determining causes. This finding is consistent with the programming test results which 

reported a significantly higher mean score among students in the SE group who experienced CPP, as 

compared to the control. These results indicates that students in the SE group may have been able to 

facilitate their knowledge construction process, through the utilization of skills specific to computational 

thinking during the pre-activity and when programming with the iPads. Even without providing explicit 

coding language instruction, participants in this study appeared to have acquired some mastery of certain 

computational thinking skills, such as problem solving, sequential thinking and determining causes. 

 

In addition, the implementation of embodiment activities that encourage the use of computational 

perspectives may also serve to improve student learning in geometrical shape concepts. The embodied 

CPP activity within the SE student group helped the students to not only recognize the unique features for 

each basic geometric shape, but also to gain a deeper conceptual understanding of these features through 

the embodied and programming activities. . Creating geometric shapes through a surrogate encourages 

students‟ use of analytical thinking skills by explicitly articulating the steps for drawing each geometric 

shape based on their features. This process resembles programming activity in terms of the analytical and 

explicit nature of coding (Papert, 1980; Pea & Kurland, 1984, p. 142). In this way, students successively 

deepen their understanding of programming concepts, and develop mastery in certain computational 

thinking skills. Given that young children are novice learners in the programming or computer science 

domain, the embodied activity instruction in this study hence serves to anchor the introduction of 

computational perspectives within familiar physical and mathematical contexts, which in turn helps to 

lower students‟ barrier towards learning programming concepts. In this project, we therefore find that it is 

possible to design coherent classroom activities that effectively embed mobile technology into the 



existing mathematics and programming curricula in an interdisciplinary manner to improve student 

learning within both mathematics and programming domains. 

 

Programming Education 
Several research studies regarding programming education for children has demonstrated interactions 

among the design features of coding applications, content of coding activities, and emotional 

development (Bers, 2009; Burke, 2012; Kazakoff, 2014). However, not much attention has been given to 

understanding the cognitive processes behind coding activities. To encourage the development of problem 

solving skills among younger learners, students may participate in programming projects that are situated 

in environments where exploration and interactions with virtual artifacts are supported.  

 

To encourage learners to become active participants, the learning environment needs to be based on 

meaningful contexts interwoven with familiar subject areas related to learners‟ everyday experiences. In 

reality, when it comes to designing educational technologies in the classroom, understanding school 

contexts is a complicated issue regardless of the various learning theories. The goal of programming 

education is hence to provide younger children a basic understanding of programming concepts, making 

them more discerning technology users and, potentially, innovative creators themselves (Scaffidi, Shaw, 

& Myers, 2005).   

IMPLICATIONS 

This study proposes a way to bring computational thinking to classroom activities within math 

curriculum. The results of this study indicate that a curriculum emphasizing computational thinking 

applied to math classrooms and strengthened through the use of technology can be an example of 

successful technology integration in classrooms. Given that students learned the basic concepts of 

programming without coding lessons, the curriculum discussed in this chapter has a potential to promote 

technology literacy for students with limited access to technology. Bringing qualified curricula into the 

school with under-served groups, teachers and leaders can minimize squandering resources while 

maximizing the effects of tablet uses. 

 
To improve current design, future research can include: 1) attention to the social context of learning that 

predicts how and when peer group may be beneficial for learning and 2) embedding different types of 

computational thinking practices, such as engineering thinking, debugging, and error detection skills. 

Future studies can provide insights to leaders, policy makers, and teachers to apply computational 

thinking in multiple domains and recognize the utility of tablets in a range of applications.  

 

First, tablet-implemented instructions can set the place for productive peer interaction. Much of the use of 

technological tools in the classroom is social as they are recognized as symbolic artifacts and mediated by 

social groups and cultural values (Moll, 2014). Theoretical and empirical work on social cognition reports 

that peer interaction may promote cognitive restructuring in significant ways (Mayer, 1988). Furthermore, 

Kafai and Quinn (2013) argued that building and remixing published artifacts in a programming 

classroom encourages collaboration and participation in a larger community. Group settings to provide a 

diversity of interaction while programming can provide young students with alternative perspectives 

promoting reshaping ides or understandings programming knowledge as they become exposed to multiple 

solutions in a community.  

 

Secondly, the classroom implements various types of instructional approaches to practice computational 

skill. One of the strategies to encourage computational thinking skill that may be appropriately integrated 

into existing subject domains and curricula is debugging, or systematic error detection. This form of 

computational thinking skill involves a highly complex and dynamic process to search for issues within 

an imperfect solution, and to achieve an overall task goal (Carver & Klahr, 1986; Law, 1998). In 



education, debugging presents a valuable learning opportunity for cognitive skills development, including 

problem solving, metacognitive skills, logical reasoning, and persistence (National Research Council, 

2005; Holbert, & Wilensky, 2011; Goulet & Slater, 2009). This research study has focused on students‟ 

development of debugging skills as one of the computational perspectives involved, of which 

mechanisms are heavily dealt with in the field of computer science but ignored in education sector. Future 

research could therefore extend on this study and target the specific development of debugging skills 

within the educational domain, particularly in the mathematics and science content areas. Young students 

could construct their knowledge of computational thinking in the form of error correction by engaging in 

a step-by-step decomposed problem-solving procedure (e.g., debugging code) within coding activities. 

 

CONCLUSION  

Although novel technology can attract student attention, the way novel technology is integrated into 

teaching and learning determines the success of educational technology. Prior research has already noted 

the importance of teachers to design appropriate curriculum and implement it within appropriate 

technology for student learning (Looi, Wong, So, Seow, Toh, Chen, Zhang, Norris, & Soloway, 2009). 

For instance, a $1.3 billion project by Los Angeles Unified School District to distribute iPads with 

preloaded digital curriculum to all students ended up demanding a refund from Apple without significant 

improvement in student outcomes (Blume, 2015, Jan 12). A follow-up study (American Institutes for 

Research, 2014) revealed that the iPads were used as a newer version of whiteboards without new 

instructional methods being created, and thus, failed to improve student learning. This example shows 

that pedagogy should come first before technology to ensure learning gains for successful technology 

integration. As discussed in this chapter, incorporating physical activities that are familiar to children to 

embody computational perspectives as a kernel of STEM learning, in one way in which curriculum 

instruction may be changed while helping children to learn better with technology.  

 

One obstacle in adopting tablets to classrooms is that the curriculum accompanying tablets tends to be 

limited to mere delivery of information via technology. Moreover, this content focuses on abstract 

concepts that are not grounded on meaningful contexts, which students can easily relate with. Therefore, 

developing curriculum based on where students can simulate their cognitive process with actions bound to 

social, cultural, and physical contexts can overcome the hurdles by facilitating young students to learn 

abstract concepts. Findings from the current study are promising because students appeared to have 

acquired necessary skills for programming and improved general cognitive skills without requiring 

specific instruction specific to programming. In addition, coherent curriculum design that integrates both 

mathematics and programming concepts not only reduced students‟ barriers to learn new concepts, but 

also allowed students to actively construct knowledge with the given programming application.  

 

Another challenge is that administrators and leaders are not ready to help teachers establish a culture that 

values risk taking, promotes exploration, and celebrates innovation when adopting technology in 

classrooms (Schrum, Galizio, & Ledesma, 2011). Rather than solely relying on teachers to adopt 

technology, collaboration between school districts and teachers to establish rigorous student-centered 

activities can overcome these challenges. This chapter suggests physical activities through which students 

can practice computational perspectives that may help them improve content learning as well as develop 

computational thinking strategies when accompanied with iPad use in the classroom.  
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