
In D. Mentor (Ed.) Handbook of Research in Mobile Learning in

Contemporary Classrooms. Hershey, PA: IGI Global, 2016

Incorporating touch-based tablets into classroom

Woonhee Sung, Ahram Choi and John Black

INTRODUCTION

activities: Fostering children‟s computational T\thinking through iPad integrated instruction.

The advancement of communication technology and the emergence of technology-rich tools continuously

transforms the way in which we live, work and learn (Voogt, Erstad, Dede, & Mishra, 2013). This rapid

development of technology imposed new challenges to educators because of “fundamental changes in

both what has to be learned and how this learning is to happen” (Voogt et al., 2013, p. 403), and increased

attention to learning in Science, Technology, Engineering, and Mathematics (STEM) domains. President

Obama identified STEM learning as a key for innovation and global leadership in the 21st century and

established initiatives for STEM learning (White House Press Release, 2010). Individual subjects in

STEM domains are not new and have been taught in schools (Sanders, 2009). However, they were not

taught as interconnected practices as they are in the real world. Therefore, the growing attention to STEM

learning focuses on the interconnected nature of each domain in STEM. The Next Generation Science

Standards (NGSS) and Common Core State Standards (CCSS) address the interdependence of individual

practice (Bybee, 2014). However, despite the growing demands for STEM education, studies indicate a

shortage of student interest and an undersupply of a trained workforce (Hossain & Robinson, 2012; Voogt

et al., 2013). The National Science Board (2010) has emphasized the significance of early exposure to

STEM concepts in childhood education, but appropriate curriculum is still lacking pedagogically and

developmentally.

In response to growing demands for STEM learning in elementary classrooms, this chapter seeks to make

STEM learning attractive to young students by proposing effective instructional strategies that develop

computational thinking ability, as a core component of STEM learning. Computational thinking is often

identified as part of a set of 21st century skills, which provides the underlying framework for the CCSS

and NGSS (Dede, Mishra, & Voogt, 2013; Chris Dede, 2010; Voogt et al., 2013). “21st century skills”

often refer to the competencies necessary for living and working in the 21st century (Voogt et al., 2013).

Although the existing 21st century skill frameworks vary in details, reviews of such frameworks showed

consensus on the importance of digital technology literacy (Dede et al., 2013; Dede, 2010; Einhorn,

2012). Across the frameworks, digital literacy, problem solving, critical thinking and creativity are

identified as skills essential in 21st century societies (Voogt et al., 2013). These skills combined consist of

the core of “computational thinking” as defined by Wing (2006). This term was used to describe a set of

thinking skills, habits, and approaches that are integral to solving problems and designing systems from a

scientist‟s perspective. Computational thinking gives learners a framework to visualize and analyze

problems (Einhorn, 2012). Wing (2006) defined computational thinking as “thinking involving solving

problems, designing systems, and understanding human behavior, by drawing on the concepts

fundamental to computer science” (p. 33). The gist of computational thinking is to think like a computer

scientist when being confronted with a problem (Grover & Pea, 2013). Many scholars have argued that

computational thinking skill is not limited to computer science but also a vital analytical skill in other

forms of STEM learning (Wing, 2006). Moreover, early exposure to computational thinking helps

students become more conscious about how to apply computational thinking to problem solving in the

STEM domain (Yadav, Zhou, Mayfield, Hambrusch, & Korb, 2011). Therefore, educational efforts

should be made to deepen students‟ understanding in core concepts of computational thinking for

successful integrated STEM learning.

This chapter elaborates on a classroom study that focuses on young children‟s acquisition of several types

of computational thinking skills, by incorporating a touch-based tablet, iPads, in the physical activities in

classrooms to teach mathematics content as well as programming perspectives that are fundamental to

computational thinking skills. The authors suggest instructional strategies that are unique to mathematics

classrooms and beneficial for children‟s development of programming skills as well as general cognitive

abilities.

Technology Integration in Classrooms

With growing interest in incorporating technology into the classroom within the last two decades, a range

of initiatives have taken place to provide teachers and schools with the tools and skills required for a

seamless integration of learning technologies into teaching and learning. Some of these initiatives include

software-focused technology integration, sample technology-based teaching and learning resources, as

well as structured professional development courses (Harris, Mishra & Koehler, 2009). Unfortunately, the

majority of earlier initiatives tended to be “technocentric” (Papert, 1987) as how these technological tools

were implemented in the classroom was dependent on their specific affordances and constraints. The

recent mass production of affordable touch-based mobile devices and tangible user interfaces (TUI),

however, have created new conditions for learning and knowledge building (Scardamalia & Bereiter,

2006), and provided improvements to the ways in which technology may be integrated more seamlessly

into classroom curriculum and pedagogy. The fact that most of these new tools with tangible user

interfaces (TUI) are portable and thus more mobile also helps to increase access to a wide variety of

educational resources, including applications and games, for educational purposes.

The adoption of mobile devices has changed the way of content production, which now emphasizes and

enables creative meaning-making processes through multimodal interactions rather than being limited to

passive consumption or learning. These affordances support users‟ internal knowledge construction while

using iPads in open-ended ways such as creating virtual artifacts or projects (Resnick, Martin, Sargent, &

Silverman, 1996). This type of learning originated constructionism (Papert, 1980), which pays particular

attention to the ways that internal knowledge is constructed in the world through the use of digital tools.

Moreover, a wide variety of available applications on iPads allows students to practice different types of

cognitive strategies. For instance, programming applications (e.g., Scratch, Hopscotch) provide an

opportunity to master metacognition and computational thinking (Clements & Gullo, 1984). A core

practice of computational thinking is tackling complex tasks by decomposing problems into step-by-step

sub-goals (Wing, 2006). The key point of computational thinking is not about making people

automatically think like computers, but rather about developing a set of mental models necessary to solve

complex human problems effectively.

The introduction of the iPad brought into practice a refined form of learning with increasing awareness

about technology as a learning medium. Meaningful learning occurs in technology-based learning

environments where there is an interplay of complex interactions among cognitive, motivational,

affective, and social processes (Anderson & Labiere, 1998; Collins, Brown, & Newman, 1989; Derry &

Lajoie, 1993; Jonassen & Land, 2000; Jonassen & Reeves, 1996; Lajoie, 2000; Pea, 1985; Shute &

Psotka, 1996; Solomon, Perkins & Globerson, 1991; Wenger, 1987). The open-ended programming

applications such as Scratch or Hopscotch enable constructive problem-solving practices through

manipulation and interacting with virtual sprites.

This chapter focuses on developing iPad-integrated curricula targeting underserved and underachieving

young learners. Regarding low-level curricula and support (Hossain & Robinson, 2012; Voogt, Erstad,

Dede, & Mishra, 2013) among underrepresented groups in early educational settings, this chapter pays

special attention to the “learn-by-doing” approach to support concrete ways of thinking about abstract

concepts, mathematics and programming. The iPad is a powerful carrier for new ways of thinking;

however adding physical activities prior to iPad use helps learners reflect about their own thinking

process in the real world by manipulating external objects and act-out by themselves. Therefore, the

combination of pre-activities in the mathematics domain followed by programming on the iPads can

allow active construction of computational thinking skills throughout the proposed instruction. Following

reviews of the mobile infused initiatives, we discuss the integration of computational thinking in the

mathematics and programming domains, and the use of the embodied approach in the design and delivery

of classroom instruction in this regard.

Computational Thinking

Traditional technology-rich classrooms have not been accompanied by curricula emphasizing higher-

order computational thinking skills, but rather placed more emphasis on basic how-to skills lacking in

creativity and relevance to everyday life (Jona, Wilensky, Trouille, Horn, Orton, Weintrop & Beheshti,

2014). To address these challenges, computational thinking needs to be embedded and integrated into

traditional STEM courses in a way that promotes students‟ application of computational thinking

strategies across multiple domains. In our approach, computational thinking is grounded in reality within

familiar and age-appropriate contexts. Computational thinking that is introduced in this study includes set

of cognitive skills applicable to a broad range of problem solving tasks.

What Is It And Why Is It Important?
Technology has provided us with a medium to develop solutions to problems we face in 21

st
 century and

changed our ways of approaching problems. Thinking computationally not only includes thinking

processes fundamental to computer science, but more importantly involves systematic and efficient

processing of information and tasks (Lee, Martin, Denner, Coulter, Allan, Erickson & Werner, 2011).

Wing (2011) underscored the role of an information-processing agent, which carries out computational

thinking thought processes so that the solutions are represented in effective ways. Researchers

consistently define computational thinking as thought processes involved in formulating problems and

decomposing goals, as well as designing solutions as computational steps and algorithms (Aho, 2012; Lee

et al., 2011; Wing, 2008, 2011). These core thought processes share traits with mathematical thinking and

engineering thinking in many ways when approaching problems (Barr & Stephenson, 2011; Chang &

Biswas, 2011). Mathematics and engineering concepts also overlap in the forms of algorithmic thinking,

sequential thinking and design thinking skills that are fundamental to analytical thinking skills and that

are fundamental to computational thinking. Bers (2010) employed Tangible K Robotics for teaching

computer programming-algorithms or sequences of instructions that move robots by sensing and

responding to their environments. Bers (2010) employed Tangible K Robotics for teaching computer

programming-algorithms or sequences of instructions that move robots by sensing and responding to their

environment. By engaging in the engineering design process within programming projects, students learn

engineering thinking and scientific thinking. Additionally, there have been studies emphasizing the use of

“computing as a medium” (diSessa, 2000) for exploring mathematics and science via programming

environments (Bers, 2010; Clements & Battista, 1989; Feurzeig & Papert, 2011). Clements and Battista

(1989) investigated the positive effects of computer programming in Logo in conceptualizing geometric

objects among primary grade children. This work was rooted in Papert‟s research around Logo

programming (Papert, 1980); which pioneered the idea of the computer being “a medium” or “a

machine”, where children can develop procedural thinking through programming. Feurzeig and Papert

(2011) revisited the first published paper on the Logo programming language and underscored the design

of Logo that promotes a constructive vision on learning mathematics through the expression of solutions

to problems via Logo programmable robot turtle. The extensive literature over the last three decades

exploring computational thinking and its application to domain learning revealed essential elements of

computational thinking. The following is a set of thinking skills selected and adapted from Barr and

Stephenson (2011) and Grover and Pea (2013, p.39) to operationally define computational thinking in the

present study.

· Abstraction and pattern generalization

· Problem decomposition

· Systematic processing of information

· Procedural and sequential thinking

· Efficiency and performance constraints

· Constructive thinking

The characteristics discussed above are the skills required for formulating, identifying, implementing and

testing possible solutions to problems combining knowledge and technology. As there is no common

definition of computational thinking, it is even more challenging to develop a suitable one specific for K-

12 educational settings. Barr and Stephenson (2011) highlighted the necessity of developing a definition

of computational thinking from a practical approach that can be embedded in K-12 classrooms (p50). In

other words, focusing on what students would actually do to achieve defined criteria of computational

thinking is important for designing classroom activities. One common factor among successful classroom

activities is the constructive environments, in which learners are required to design solutions iteratively,

simulate and reflect on the processes with feedback (Resnick, 2007). Barr and Stephenson (2011) also

pointed that in solving an interesting problem, abstraction of thinking is one heuristic that can help

students to attack the problem. Thus, activities should allow students to construct solutions to problems

using different levels of abstraction and to design diverse ways of tackling problems.

The next step is to choose appropriate curriculum and contexts where these activities can be embedded.

There is extensive research conducted on the relationships between programming, computational thinking

and mathematics (Fadjo, Hallman, Harris, & Black, 2009; Feurzeig & Papert, 2011; Jona et al., 2014;

Voskoglou & Buckley, 2012). Carnegie Mellon Center for Computational Thinking
1
 described

computational thinking as “thinking algorithmically and with the ability to apply mathematical concepts

such as induction to develop more efficient, fair, and secure solutions”. Therefore, the authors aim at

implementing computational thinking and its applications within existing mathematics curricula in the K-

12 classroom. As mentioned earlier, skills taught within traditional mathematics classrooms were found to

overlap well with several important computational thinking skills, and seemed the most appropriate

subject domain to be used in our study. Programming applications were adopted as tools to help students

practice computational perspectives in the context of learning mathematical concepts through

programming. The following sections review the relationships between computational thinking

particularly in mathematics and programming domain.

Computational Perspectives in Programming: Thinking About Thinking
Programming is not simply about using computers. Grover and Pea (2013, p.40) highlighted that

“programming is not only a fundamental skill of computer science and a key tool for supporting the

cognitive tasks involved in computational thinking but a demonstration of computational competencies as

well”. Programming enables the application of both explicit and tacit computational thinking skills by

incorporating challenges that require higher order thinking (Einhorn, 2012). Programming is concerned

with answering „How would I get a computer to solve this problem?‟, where the computer is a machine,

and a human provides commands to the machine recursively. Answering the question: „How would I

solve it?‟ fosters the identification of appropriate abstractions that lead to solutions for the computer

(Wing, 2008). This is the essence of computational perspectives that is developed by Berland and

Wilensky (2015) as a unique element within computational thinking.

In other words, programming requires problem solving processes by the „necessarily explicit nature of

programming‟, which make people to „articulate assumptions‟ and „precisely specify steps to their

problem solving approach‟ (Papert, 1980; Pea & Kurland, 1984, p. 142). This process of solution

construction requires analytic perspectives for solving problems that are unique and fundamental to

computer programmers or scientists. The next concern is then “how to separate the cognitive activity of

computational thinking from the action of merely working on a computer” (Dede, Mishra, & Voogt,

2013, p. 4). As Dede, Mishra and Voogt (2013) argued, distinctive computational thinking skills is not

about how to program a computer, but rather a cognitive approach to problem solving that uses skills as

abstraction, decomposition, algorithms, and iterative processes (Yadav et al., 2011). Thus, this chapter

seeks to explore computational thinking in terms of thinking like a computer programmer or a computer

artist for domains that are not necessarily related to computer science. This is called computational

perspectives, a concept coined by Berland and Wilensky (2015). Berland and Wilensky (2015) used the

term computational perspective to separate it from broader definition of computational thinking and to

highlight that the perspective of thinking with the computer-as-a-tool is contextualized and constrained.

Computational thinking is not limited to learning technical skills in computer science; rather it is the

perspective that can be applied in a domain that is not necessarily computer science. The central argument

of the chapter is to investigate design features of a learning environment that alters students‟ perspectives

within a nontechnical domain to improve mathematics learning as well as programming knowledge in

transfer.

Continuing the line of argument of computational thinking, Clements and Gullo (1984) indicated that

computer programming can make abstract concepts concrete by making children‟s thinking process more

conscious and explicit and this leads to more effective learning. This „explicit nature of programming‟ is

the key point that needs to be adopted in instructional design priming computational perspective. In other

words, if the practice of computational perspective can be employed in other domains of learning outside

of computer science, it could provide an effective setting for cognitive process instruction that focuses on

how to think rather than what to think, which is fundamental to computational thinking (Clements &

Gullo, 1984). Designing a learning environment that promotes explicit thinking processes is a key

concern in deciding how to introduce programming within the context of K-3 curriculum and assist

students in learning to program. Consequently, the next issue is to figure out what thinking practices or

skills are particularly useful in the mathematics domain that can further benefit programming ability.

Computational Thinking in Mathematics
Mathematical ability is often discussed as a core factor predicting students‟ ability to learn computer

programming (Pea & Kurland, 1984). Despite the theoretical relationship between mathematical ability

and computer programming, early reviews often concluded that effects of programming on overall

mathematics performance were not consistently strong (Clements, 1985). The negative result is

attributable to the mere “exposure” to programming that failed to provide significant improvement

(Clements, 1999). Efforts have been made to propose effective instruction for mathematics within the

context of computer programming (Barr & Stephenson, 2011; Clements & Battista, 1989; Clements &

Gullo, 1984; Feurzeig & Papert, 2011; Liu & Wang, 2010; Matarić, Koenig, & Feil-Seifer, 2007). These

studies showed the relevance among mathematical, spatial problem solving abilities and computer

programming which is supported by theoretical argument as well. By adding “concrete” instances of

reasoning that is inherent in programming activities benefit learning abstract mathematical concepts and

procedural thinking for problem solving (Rittle-Johnson, Siegler, & Alibali, 2001; Settle & Perkovic,

2010; Voskoglou & Buckley, 2012). In order to explore the overlap in programming and mathematical

concepts, the next section investigated the role of embodied approach as learning paradigm.

The Embodied Approach

Grounded cognition has been discussed as a variety of forms in cognitive science in its venerable history

and continued evolving by taking new forms in robotics, cognitive ecology, cognitive neuroscience, and

developmental psychology (Barsalou, 2008, 2010; Black, 2010). Grounded cognition reflects the

assumption that the mental representations are shaped by multiple ways of grounding such as mental

simulations, situated action, bodily states, or modality specific factors (Barsalou, 2008). In particular,

embodied cognition emphasizes the connection between knowledge representation and the bodily states

(Barsalou, 2008; Glenberg, 2008, 2010; Wilson & Golonka, 2013; Wilson, 2002). The theory of

embodied cognition is rooted in the premise that body movement and how bodily activities are placed in a

richly perceived physical world affect on cognitive processes deeply. This premise supports the findings

that the embodied approach plays a critical role in learning higher-order and abstract concepts (Croft &

Cruse, 2004; Gallese & Lakoff, 2005; Johnson & Lakoff, 2002; Lindgren, 2014; Lindgren & Johnson-

Glenberg, 2013).

The following research studies provide evidence that the body serves as a significant resource for

people‟s understanding of abstract concepts and language. The kinesthetic action grounded in concept

leads to conscious thinking, perception, experiences, and deliberate uses of language for shaping the

learning. The embodiment claim for language emphasized the contribution of action to cognition and

meaning. Glenberg and Kaschak (2002) tested that sentence understanding worked faster for the

participant who was asked to select congruent action to the literal direction of the target meaning. When

participants were asked to judge the sensibility of a sentence for implied direction (e.g., toward or away)

that are matched with the literal meaning (e.g., when you give vs. when the other gives you), they

performed faster since it was not only perceptual qualities but also action that affected their

decisions. Gibbs (2005) echoed the importance of metaphor in “mapping experiences of the body to help

structure abstract ideas that are fundamental to how people speak and think” (p.12). The kinesthetic action

grounded in concept leads to conscious thinking, perception, experiences, and deliberate uses of language

for shaping learning. In a similar manner, the use of iPads allows students to apply acquired skills to

virtual programmable manipulatives, which provides multimodal feedback and perceptual experiences

(Paek, 2012). Concrete learning experiences from physical act-out and manipulation of real-world objects

in pre-stages are then transferred into virtual environments on the iPads where students utilize different

sensory modalities from offline activities.

Another line of research by Glenberg, Gutierrez, Levin, Japuntich, and Kaschak (2004) demonstrated the

effect of action as a facilitator for reading comprehension among second grade students. This was in line

with Glenberg & Kaschak‟s work (2002) on the use of the embodied instructional method to improve

memory for a better comprehension of the text material. Students manipulating toy objects to act out

stories demonstrated increased understanding and memory of the stories they read. Further, imagined

manipulation of objects after acting out also showed increased acquisition and memory of the story

(Glenberg et al., 2004). Glenberg et al (2004) concluded that both actual manipulation of toy objects and

imagined manipulation resulted in better memory and comprehension compared to non-embodied

students. Black (2007) also pointed out that imagining actions for another related story after acting out

with toys enhances skill development in forming the imaginary world of the story. In summary, Black

(2010) specified three steps in a grounded cognition approach involved in these studies:
1. Have a perceptually grounded experience

2. Learn to imagine the perceptually grounded experience

3. Imagine the experience when learning from symbolic materials (p. 46)

Outside of the cognitive linguistics field, evidence has also been provided in the field of cognitive and

developmental psychology that supports the embodied cognition approach. Research studies in cognitive

psychology have provided support for the effects of sensory-motor engagement in diverse tasks with

perception, memory, knowledge, thought and language (Black, 2010; Glenberg, 2008; Glenberg et al.,

2004; A. D. Wilson & Golonka, 2013; M. Wilson, 2002). Similar evidence can be found in Barsalou‟s

research (2010), where he found that manipulating different levels of bodily engagement could causally

affect higher cognitive processes such as evaluation, decision-making and attribution (Barsalou,

Niedenthal, Barbey, & Ruppert, 2003; Niedenthal, Barsalou, Winkielman, Krauth-Gruber, & Ric, 2005).

In developmental psychology, Smith and Gasser (2005) proposed the idea that intelligence emerges

within a physically, socially and linguistically grounded environment where sensorimotor activities play

central roles in the development.

Most importantly, these research studies prove the case that cognition is grounded in the sensorimotor

activity of our bodies, thus expanding the body‟s physical interaction within conceptually grounded

environments that could become “fertile soil onto which we can lay the seeds of new learning” (Lindgren,

2014, p. 40). Therefore, the embodied approach provides valuable resources for learning symbolic

concepts or new literacies that are unfamiliar to young learners, such as mathematics, science and

technology literacies. An embodied perspective promotes a conceptualization of mathematics, and in fact

all STEM content, as grounded and situated in the spatial–dynamical and somatic experiences of the

person who is engaging in well-designed activities (Abrahamson & Lindgren, 2014). Thus, the current

study design reflects previous research findings on the effectiveness of embodied instruction, and

employs act-outs and a manipulation of action within the learning environment.

Connection Between Embodiment And Mathematics
In elementary education, experiential hands-on education has been in use to promote learning new

materials or even abstract concepts by forming real-world meaning and increasing motivation. Hands-on

experience can bridge the disconnection between subject areas and contextual experience within learners.

Especially for younger learners, mathematical practice tends towards about learning and applying

arbitrary symbolic inscriptions that are not necessarily meaningful to them. Even during practice with

mathematical formulae, students often fail to solve same conceptual concept in a different context or

apply it in other contexts. The problem stems from the absence of perceptually grounded or embodied

cognition that fosters a deeper level of understanding.

Fischer, Moeller, Bientzle, Cress and Nuerk (2013) employed the concept of embodiment in learning

number line sense by „moving along the number line‟ using a sensorimotor training concept. Fischer et al.

(2013) incorporated systematic full-body movement allowing for an embodied experience of the trained

numerical concept on a physical number line. Their results support theoretical arguments of the embodied

approach and other research studies by showing pronounced training effects on children‟s number line

estimation following the embodied training. Moreover, the embodied group demonstrated transfer effects

in counting ability as compared to the control group. Incorporating a physical number line analogous to

students‟ mental number line and a systematic full-body experience corresponding to their mental

processes resulted in significant improvements in number sense among young learners (Link, Moeller,

Huber, Fischer, & Nuerk, 2013).

Therefore, what appears important for effective mobile learning is the structural and analogical

relationships between the subject matter and the physical context of where learning is taking place. Segal

(2011) had emphasized that the conceptual mapping of actions congruent with learned concepts support

thinking and learning. The current learning design is informed by the studies discussed above, and

incorporates these ideas through physical layouts on the floor to help students learn geometric shapes. The

conceptually congruent environment for learning geometric shapes is realized by providing a spatial grid

layout on the floor that allows the incorporation of bodily-movement within the learning activities.

Computational Perspectives in Embodied Activities

Conceptual Congruency In Embodied Simulation
STEM learning in elementary educational settings ideally focuses on learner-centered and constructionist

approaches for designing motivating and engaging activities. Embodied cognition recognizes the

importance of learners‟ participation through active interactions with a physical world, where abstract

concepts may be constructed through concrete sensorimotor experiences (Abrahamson & Howison, 2010;

Abrahamson & Trninic, 2015; Bamberger & DiSessa, 2003). When physical interactions are grounded in

conceptual reasoning, the conceptual metaphor becomes cognitive substrate for learning abstract concepts

(Lakoff & Johnson, 1999; Segal, 2011).

The goal of this study is to improve students‟ problem-solving skills in programming tasks - a primary

measure of computational thinking skills (Perkovic & Settle, 2010; Wing, 2008) - by designing embodied

unplugged activities in the domain of mathematics. The following sections discuss how these pre-

activities are grounded in the embodied approach for promoting successful use of tablets. How

programming concepts are intertwined with embodied activities in mathematics is discussed in the next

section, together with explanation of how the core concepts of programming are incorporated into the

learning activities.

A number of studies have shown the necessity of physical interactions grounded in conceptual reasoning,

which will become internalized as simulated actions. Abrahamson and Lindgren (2014) quoted Piaget‟s

(1968) argument that action-oriented mental processes delivered in concrete situations supports the

development of mathematical or scientific ideas. Similarly, Lakoff and Johnson (1999) explained how

conceptual metaphors emerge from concrete sensorimotor experience that is grounded in image schemas.

Therefore, providing physical mathematical representations where learners can act out solutions is key to

promoting physical interaction and concrete simulation. The math content topic targeted in this study is

on 2-dimensional geometric shapes, their features and other related concepts. Employing the embodied

perspective in mathematics learning design, students are moved their bodies to draw 2-dimensional

geometric shapes based on their knowledge of these shapes‟ unique characteristics. However, this still

lacks the integration of the computational perspective, a core concept in computational thinking. The next

question is how to combine computational perspectives into the embodied activities on2-dimensional

geometric learning.

In order to address the question, we reviewed the various types of embodiment studied in the context of

programming and computational literacy. Researchers in recent studies, such as Fadjo (2012), proposed a

conceptual framework of embodiment in formal educational settings, called Instructional Embodiment,

within the STEM domain (Black, Segal, Vitale, & Fadjo, 2012; Fadjo, Lu, & Black, 2009), which

integrates both physical and imagined movement of pre-defined content (Black et al., 2012; Fadjo et al.,

2009). The main categories in Instructional Embodiment are physical and imagined. Within physical

embodiment, there are four forms of Instructional Embodiment: Direct, Surrogate, Augmented and

Gestural embodiment (Fadjo, 2012).

Direct Embodiment is the physical enactment of pre-defined scenarios or sequences that contains explicit

and implicit cues for movement (Fadjo, 2012). The application of direct embodiment in our study is the

form of bodily movement involved in completing the given geometry problem solving. Surrogate

Embodiment is a type of physical enactment where the movement of an external surrogate is controlled

and manipulated by the learner (Fadjo, 2012). Manipulating a surrogate resembles the concept of

computer programming as the cognitive process is analogous to the processes involved when

programming virtual sprites. Direct embodiment has shown significant effects on developing

programming skills, especially conditional sequences, while surrogate embodiment has been shown to

provide a unique opportunity for the instruction of arithmetic topics during video game design (Fadjo et

al., 2009). There is thus a conceptual comparison that could be made between surrogate embodiment and

computational perspectives, since manipulating a surrogate during the surrogate embodiment process

resembles the thought process of a programmer during programming.

In our study, direct embodiment was employed as a form of physical role-play that involved students‟

own bodily movement. Direct embodiment does not increase the likelihood of displaying each step to

reach solutions, but rather allows students to implement solutions by moving their own bodies. Operating

a surrogate, on the other hand, requires students to display explicit knowledge in the form of articulation

in order to provide commands to move a surrogate. Computational perspective, which reflects conceptual

congruency during embodiment, is thus adopted when a surrogate is employed within an embodied

activity, whereas direct body movement does not provide opportunities to practice the perspectives from

programmer or computer scientist. Based on embodied cognition theories and research in learning, this

study investigates the effects of conceptually congruent embodiment on young children‟s learning.

Moreover, learning concepts are extended into thinking skills, specifically computational thinking and

problem-solving skills in geometry learning and programming domain.

INCORPORATING TOUCH-BASED TABLET INTO ELEMENTARY CURRICULUM

Addressing Issues in Tablet Integrated Learning

Mobile learning has been researched to some extent in recent years, with an emphasis on the mobility of

handheld devices such as mobile phones and PDAs. It was conceived as extension of e-learning, which

provides access to networks when computer access was restricted. (Motiwalla, 2007). Although in

aforementioned cases, mobile learning tend to be used as a replacement for a physical learning

environment delivering standalone instruction, several studies noted advantages of integrating the device

into physical environments for school subjects. Other research showed how virtual information delivered

via handheld devices provides authentic learning experiences. For instance, students conducted scientific

investigations on local environmental problems (Squire & Klopfer, 2007) and evaluated regional

historical information (Schrier, 2006) using location-aware technology (e.g. use of RFID chips, GPS) and

handheld devices. Although such studies were implemented outside classrooms, they demonstrated the

potentials of using mobile devices for academic subjects. By incorporating information provided by

handheld devices into their physical surroundings and activities, students can relate the information to the

real world problems in meaningful way. Given their developmental stage, incorporating the use of

technology as a tool into physical activities are particularly effective for children‟s learning (Price &

Rogers, 2004).

Young children in the early learning stages from K-3 have yet to fully develop fine motor skills necessary

to manipulate small objects to operate technology, and thus may experience issues operating and

controlling conventional input devices such as mouse and keyboards for computers or keypads of a

mobile phone, such that they would not be able to benefit fully from the technology. A study by

Lauricella, Barr, and Calvert (2009), for example, showed that young children lack proficiency in

pointing and clicking with a computer mouse. However, touch-based tablets such as iPads allow children

to perform various tasks using its touch interface, which is intuitive and easy to use. Moreover, Paek

(2012) reported that children using a touch-interface had better learning outcomes than children using

desktop computers when playing a math game. Therefore, touch-based portable devices such as iPads

have greater potential for classroom applications with young children in early elementary settings.

While programming skills have been taught traditionally to older students at the middle and high school

levels, there has been a shift to open this domain to young children. To better customize the learning of

basic programming skills for younger children, the DevTech research group at Tufts University and

MIT‟s Lifelong Kindergarten developed Scratch Jr., an open-ended block-based version of the popular

Scratch programming app. Through this app, the researchers attempted to address the challenges

encountered by young children when navigating text-heavy programming environments, by creating a

more intuitive programming environment based on graphics instead of text. In our study, we make use of

Hopscotch, a similar iPad application that teaches foundational programming skills to young children

aged five to seven using a graphical block-based programming language. In a similar manner to Scratch

Jr., Hopscotch attempts to address the needs of children in the younger age group by creating a simpler

and graphically intuitive version of a programming application. The Hopscotch application provides a

combination of tangible and graphical programming language tools that would appeal more to young

children. In the Hopscotch application, children snap a collection of graphical “programming blocks” to

create a stackable programming structure.

When the iPad, a touch-based smart device, first appeared in the market, it received a lot of attention as

„next-generational educational technology‟ (Murray & Olcese, 2011). Several states such as New York

and Virginia equipped classrooms with iPads across different grade levels, for various uses such as e-

textbooks (Hu, 2012). However, equipping students with 21
st
 century devices do not necessarily promote

the development of 21
st
 century skills in the classroom. Despite the promises of digital tools for learning,

children are only on the receiving end of operating media; they do not necessarily know how to optimally

use media creatively or critically (Rideout, Foehr & Roberts, 2010). Even in the 20th century,

innovative technology (e.g. Skinner‟s Programmed Instruction, Papert‟s Mindstorms) had been

introduced into educational settings with an expectation that this new technology would change the

educational system (Sawyer, 2006). However, these technological software and equipment alone were not

enough to prepare students for the 21st century. The number of classrooms with computers and networks

has been increasing in the last decade, but equipment alone does not lead to educational change

(Scardamalia, 2001; Wenglinsky, 2005). Changes at the classroom level occur around curriculum –

through “curriculum materials, teaching practices, and beliefs or understandings about the curriculum and

learning practices” (Fullan, 2007, p.85). Given that the Common Core Standards (CCS) and Next

Generation Science Standards (NGSS) emphasize the interdisciplinary nature of the STEM domains, this

chapter seeks to weave fundamental 21
st
 century cognitive skills into existing math curricula, using an

iPad application as a scaffolding tool.

STUDY DESIGN TO TACKLE CHALLENGES IN ADOPTING TABLETS IN

EDUCATION

Goal of the Study

The study proposes an interdisciplinary STEM curriculum incorporating touch-based tablets to prepare

young students for the 21st century society. A gap still exists between conceptual definitions of

computational thinking in STEM areas and how it is applied in classrooms. Several studies confirmed that

technology integration in the classroom has failed to take into account the new conditions for the

development of unique skills required for computer literacy, in what is referred to as computational

thinking ability (Hatlevik, Ottestad, Skaug, Kløvstad, & Berge, 2009; Scardamalia & Bereiter, 2006).

Lankshear and Knobel (2006) emphasized the importance of designing educational contexts in which

technology literacy and fluency can be successfully embedded. This study is thus designed to embed

computational perspectives into existing math curriculum to develop computational thinking skills with

the use of a mobile programming application. In order to examine how the new instructional approach

incorporating an iPad as a cognitive tool affects children‟s STEM learning, an experimental study was

conducted in the second grade elementary classrooms. Study design, procedures and results are discussed

in the following sections.

Study Design and Procedures

The purpose of this study is to examine the effects of an instructional method that incorporates iPad

applications in the development of children‟s early computational thinking skills, within the domains of

mathematics and programming. Children were assigned to three different conditions: the Surrogate

Embodiment (SE) condition, the Direct Embodiment (DE) condition, and the Control condition. Before

they build programming code to solve given math problems via Hopscotch, children were engaged in

three different pre-activities depending on the condition as described in Table 1. Children in the SE

condition gave commands to their partner to solve the problem, and partners moved their bodies around a

grid layout on the floor in order to create a solution. Children in the DE condition moved their own bodies

to demonstrate the step-by-step solution. Children in the control condition were given a worksheet on

which they had to draw their solution. All children received a handout that describes the differentiating

features of various 2D geometric shapes (e.g. degree of angles and length of side) as a reference for the

problem they were trying to solve.

Given the various perspectives and evolving definitions of computational thinking, a set of skills is

included in defining computational thinking that are applicable to this study. They were adapted from the

definition of the International Society for Technology in Education and Computer Science Teacher

Association
2
 to fit our study objectives:

1. Formulating problems in a way to use a computer to solve: Commanding

2. Logically organizing the data: Procedural and sequential steps

3. Implementing possible solutions: Programming fluency and efficiency

4. Transferring problem solving process to a wide variety of problems: transfer mathematics

learning into programming task

This study proposes embodied activities as a way to take computational perspectives in the domain of

mathematics and programming. Students in the SE condition solve mathematics problems from a

computer programmer‟s perspective by taking the role of a commander who commands the surrogate by

giving procedural and sequential steps to reach solutions. This is what the SE group executed during the

intervention when given mathematics problems. While students in SE group embody themselves as

programmers, the DE group engages their own body movement to enact steps to solve

problems. Therefore, the critical difference between SE and DE is the presence of CPP engaged in bodily

activities. The intervention design is described in table 1 and the procedure of the study is described in

table 2.

Table 1. Details of conditions

Intervention Details of each group

Surrogate Embodiment Group (SE)

-Presence of CPP and embodied simulation

(Enact the role of commander to practice

computational perspectives)

Students manipulate a surrogate to perform solutions for given

geometry problems.

Students provide step-by-step commands to the surrogate to draw a

given 2D shape based on its basic features.

Direct Embodiment Group (DE)

-Absence of CPP and direct embodied

activity

(Directly engaged bodily movement without

a commander role)

Students move their body to draw given geometric shapes.

Students do not need to command a surrogate, but perform a

solution by moving their own body.

Control

(None of above)

Students study and draw solutions on paper handouts.

Table 2. Study procedures

 Week 1

Pre-activity

stage-1

Week 2

Coding-1

Week 3

Pre-activity

stage -2

Week 4

Coding-2

Week 5-6

Advanced Coding

Task Drawing a

rectangle and a

square

Programming a

virtual character

to move and draw

a rectangle/square

Drawing an

equilateral

triangle

Programming a

virtual character to

move for drawing an

equilateral triangle

Programming a

virtual character to

draw complicated

shapes such as

pentagon or

hexagon or other

shapes

SE

group

Students

command a

surrogate

(teacher) to

move and leave a

trail for drawing

a

rectangle/square

on the grid

drawn on the

floor

All 3 groups are

asked to do

programming on

Hopscotch to

make virtual

character draw a

rectangle/square.

Students

command a

surrogate to

move and create

a triangle on the

floor

All 3 groups are

asked to do

programming on

Hopscotch to draw

an equilateral

triangle by

commanding a

virtual character

Students create

programming to

draw complicated

shapes or multiple

shapes in one

screen. All 3

groups are asked to

create

programming for

either hexagon or

pentagon

DE

group

Students move

their own body

to draw a

rectangle/square

Students move

their own body

to create a

triangle on the

floor

Control

group

Students read

hand-out and

draw shapes on

the paper

Students read

hand-out and

draw shapes on

the paper

Programming Activity Using Hopscotch

After the pre-activity, students were engaged in programming activities to create the shapes they learned

in the pre-activity, using the Hopscotch app on the iPad, (http://www.gethopscotch.com/) which is a

visual block-based programming application for iPads. This app was used to help encourage and identify

whether there had been a transfer of what students learned through pre-activities into programming tasks.

The Hopscotch app is similar to Scratch (http://scratch.mit.edu), which was built based on the Logo

programming framework, and designed to support simple programming (Papert, 1980). In Hopscotch,

characters can be created and manipulated through a certain algorithm, which is created using coding

blocks (Amer & Ibrahim, 2014). These characters act according to either specific built-in scenarios or in

reaction to the algorithm created by users. In order to code in Hopscotch, a user drags a block from a

palette of command blocks onto the stage, where a series of blocks can be snapped together. By hitting a

http://www.gethopscotch.com/
http://scratch.mit.edu/

play button, the screen changes to show the movement of characters based on the code, or algorithm, built

with sequenced graphical blocks.

In the programming activity, children were asked to program a character move along a path based on the

geometric shapes they studied in the pre-activity. The children did not receive any specific instruction

about meaning of each command block, but they were taught how to move command blocks into

sequences of instruction, and how to execute their codes. They revised their code until they were able to

create the given shapes without any explicit help or feedback from the experimenters.

Figure 1. A screenshot of Hopscotch programming stage for creating a square.

Figure 2. A screenshot of Hopscotch result page after creating programming blocks.

After the children learned basic geometric shapes (e.g. triangles and rectangles), they proceeded to an

advanced programming session where they had to code the paths using more complex geometric shapes

(e.g. pentagons and hexagons). The children did not act on these shapes, because those were not used in

the pre-activity. Upon completion of all the programming activities, their cognitive skills, learning gains

in geometry, and programming fluency were measured.

Participants

The study was conducted with 39 2nd grade students (25 males, 14 females) during a coding afterschool

program in a New York City public school. The data obtained from five students were excluded from

analysis due to frequent absences. The intervention was conducted for 10 weeks from March to May in

2015. This ethnically diverse school consists of 25% Hispanic, 39% Black, 20% White, and 6% Asian

students

Measures

Cognitive Skills
To assess students‟ abilities to reason about and generalize a solution for realistic situations, the authors

administered the Test of Problem Solving-3 (TOPS-3: Elementary; Bowers, Huisingh, & LoGiudice,

2005), a commonly used test to measure students‟ thinking and reasoning skills. The study utilized three

pictured situations from the TOPS-3 battery, with a total of 14 questions. Among the cognitive skills

measured by the TOPS-3 test, we selected problem solving, inference, predicting, determination of

causes, and sequencing skills as skills that are most relevant to this study. Children verbally responded to

the standard set of questions that were read aloud by the experimenter. Tests were scored using scale

norms from the scoring manual. Responses categorized under each thinking skill were summed to form

subscales. Higher scores indicated stronger abilities to solve problems, infer, predict, determine causes,

and understanding sequence.

Learning in Mathematics and Programming
The authors developed tests to measure learning outcomes in geometry and programming. Geometry test

was developed based on the geometric thinking level theory (Van Hiele, 1986), which consists of four

levels: recognition, visual association, description/analysis, and abstraction/relation. The test items were

selected from Chang, Sung, and Lin (2006) measurement, which originally had 20 multiple-choice

questions. 10 items were selected for 2
nd

 graders based on the their school curriculum.

To measure students‟ programming fluency, a paper-based programming skill test was developed. Testing

items were developed based on three assessment criteria in computer science education that Meerbaum-

Salant, Armoni, and Ben-Ari (2013) developed based on the Bloom‟s taxonomy.

1. Understanding: The ability to summarize, explain, exemplify, classify, and compare CS concepts,

including programming constructs;

2. Applying: The ability to execute programs or algorithms, to track them, and to recognize their

goals;

3. Creating: The ability to plan and produce programs or algorithms. (p. 245)

The above criteria were evaluated by asking students to choose correct programming results, create

effective codes, detect patterns, and apply the algorithms in the paper-based programming skill test.

Results

The results of the study measures were analyzed to identify the effects of different types of iPad-

integrated instructional methods: Surrogate Embodied instruction, Direct Embodied instruction, and non-

embodied instruction. Learning outcomes were measured in two domains: mathematics (geometric

knowledge) and programming.

Cognitive Skills: Result from TOPS-3

The scores from the TOPS-3 measure were compared between the Control and Embodiment groups (EM;

Combination of SE and DE), and further analysis was conducted within the embodiment groups. Given

the cognitive and behavioral nature of the embodied instructional methods, we expected improvements in

participants‟ abilities on critical thinking skills. We analyzed the TOPS-3 test measure results using the

Mann-Whitney test, and found that the EM group does not show significant gains compared to Control

group. Nevertheless, the SE group scored slightly higher on problem solving (EM Mdn=6.0, Control

Mdn=5.5), sequential skills (EM Mdn=5.0, Control Mdn=3.5), and determination of causes (EM

Mdn=4.0, Control Mdn=3.5).

To better understand the effects of different types of embodied instruction in the development and

practice of computational thinking skills, further analysis between the SE group and the DE group were

conducted. Examination of the TOPS-3 test revealed that the SE group performed better than DE group in

problem solving (SE Mdn=6.0, DE Mdn=5.0), U = 13.0, p = .027, r = .57. sequence (SE Mdn=5.5, DE

Mdn=4.0), U = 13.5, p = .027, r = .53., determine causes (SE Mdn=5.0, DE Mdn=3.0), U = 13.0, p = .027,

r = .55. On the other hand, the DE group showed more significant improvement in skills associated with

creating solutions for problems by drawing logical reason for a given aspect, evaluating alternative

solutions, and predicting anticipated future.

Learning in Mathematics and Programming
The relationships between the three groups of instructional methods were analyzed using regression. A

one way ANOVA conducted for the geometry test and programming test measures shows significant

differences between groups. Table 2 reports the mean scores for each group.

Table 3. Mean of groups for geometry and programming test score

Direct Embodiment

group

Surrogate Embodiment

group
Control Total

 M SD M SD M SD M SD

Geometry 7.33 1.58 7.43 1.51 5.38 1.98 6.48 1.97

Programming 7.90 3.45 10.14 6.18 5.35 2.83 7.60 4.87

For the geometry test measure, the total mean score differences are significant, F (2, 26) = 4.578, p=.02.

A post-hoc test confirms that the mean difference between the DE and Control groups is significant with

p=.044. On the other hand, the differences between the SE and Control groups is only marginally

significant with p=.051. However, when analyzing the scores of higher level testing items for abstraction

within the geometry test measure, the DE group shows significantly higher mean scores (M=2.57,

SD=0.53) as compared to the Control group (M=1.46, SD=0.776) with p=.017. When examining the

lower level testing items in the geometric knowledge test, which assessed recognition and visual

association, the DE group (M=5.55, SD=0.881) was shown to be significantly different from the Control

group (M=3.92, SD=1.382) with p= .017.

When it comes to the coding test, significant differences are found, F(2, 26) = 3.383, p=.04. A post-hoc

test shows significantly higher mean scores for the SE group (M=7.90, SD=3.45), as compared to the

Control group (M=5.35, SD=2.83) with p= .039. On the other hand, the DE group failed to show

significant differences from Control group.

DISCUSSION

Many cognitive scientists have studied how bodily action affects conceptual development and proposed

models to explain how learning abstract concepts benefits from concrete embodied experiences. As

discussed earlier, it has been argued that STEM disciplines requires analytical and computational

perspectives, and the embodied approach to help create learning environments that encourage learners

toward these perspectives (Abrahamson & Lindgren, 2014). This study design incorporates embodied

activities into the practice of computational perspectives in learning geometric concepts. Through the

implementation of various embodied intervention activities followed by programming practice on the

iPads, students are motivated to execute problem solving skills specific to computer programming

contexts. Students in the surrogate-embodiment condition practiced computational perspectives through

the use of a surrogate during the pre-activities. The presence of a surrogate in the SE group promotes

analytical thinking processes that are unique to computational perspectives such as commanding,

procedural and sequential thinking strategies. This study examines if such explicit efforts at the pre-

activity stage maximizes the learning process using Hopscotch to improve student understanding of both

mathematics and programming concepts. The overall results demonstrated promising effects of

instructional methods involving surrogate embodiment over methods that include direct or no

embodiment at all.

Overall, student groups engaged in embodied activity report higher mean scores in geometric learning,

programming and the TOPS-3 test measures as compared to the control group. The TOPS-3 test fails to

show significant differences between the embodied and control groups; however when comparing

between the SE and DE groups, the group that experienced surrogate embodiment activities (thus

involving CPP) shows significantly higher performance in the TOPS-3 test measure, that includes

problem-solving, sequential thinking and determining causes. This finding implies that when iPad use is

accompanied by embodied activity with CPP (as in the SE group), students gain opportunities to practice

skills that are fundamental to computational thinking. As the core idea of computational thinking is to

tackle complex tasks by decomposing the task into sequential steps to reach a solution (Wing, 2006),

students who practice computational perspectives in an embodied activity followed by practicing on the

iPad seemed to have attained computational skills such as problem-solving, sequential thinking and error

correction by determining causes. This finding is consistent with the programming test results which

reported a significantly higher mean score among students in the SE group who experienced CPP, as

compared to the control. These results indicates that students in the SE group may have been able to

facilitate their knowledge construction process, through the utilization of skills specific to computational

thinking during the pre-activity and when programming with the iPads. Even without providing explicit

coding language instruction, participants in this study appeared to have acquired some mastery of certain

computational thinking skills, such as problem solving, sequential thinking and determining causes.

In addition, the implementation of embodiment activities that encourage the use of computational

perspectives may also serve to improve student learning in geometrical shape concepts. The embodied

CPP activity within the SE student group helped the students to not only recognize the unique features for

each basic geometric shape, but also to gain a deeper conceptual understanding of these features through

the embodied and programming activities. . Creating geometric shapes through a surrogate encourages

students‟ use of analytical thinking skills by explicitly articulating the steps for drawing each geometric

shape based on their features. This process resembles programming activity in terms of the analytical and

explicit nature of coding (Papert, 1980; Pea & Kurland, 1984, p. 142). In this way, students successively

deepen their understanding of programming concepts, and develop mastery in certain computational

thinking skills. Given that young children are novice learners in the programming or computer science

domain, the embodied activity instruction in this study hence serves to anchor the introduction of

computational perspectives within familiar physical and mathematical contexts, which in turn helps to

lower students‟ barrier towards learning programming concepts. In this project, we therefore find that it is

possible to design coherent classroom activities that effectively embed mobile technology into the

existing mathematics and programming curricula in an interdisciplinary manner to improve student

learning within both mathematics and programming domains.

Programming Education
Several research studies regarding programming education for children has demonstrated interactions

among the design features of coding applications, content of coding activities, and emotional

development (Bers, 2009; Burke, 2012; Kazakoff, 2014). However, not much attention has been given to

understanding the cognitive processes behind coding activities. To encourage the development of problem

solving skills among younger learners, students may participate in programming projects that are situated

in environments where exploration and interactions with virtual artifacts are supported.

To encourage learners to become active participants, the learning environment needs to be based on

meaningful contexts interwoven with familiar subject areas related to learners‟ everyday experiences. In

reality, when it comes to designing educational technologies in the classroom, understanding school

contexts is a complicated issue regardless of the various learning theories. The goal of programming

education is hence to provide younger children a basic understanding of programming concepts, making

them more discerning technology users and, potentially, innovative creators themselves (Scaffidi, Shaw,

& Myers, 2005).

IMPLICATIONS

This study proposes a way to bring computational thinking to classroom activities within math

curriculum. The results of this study indicate that a curriculum emphasizing computational thinking

applied to math classrooms and strengthened through the use of technology can be an example of

successful technology integration in classrooms. Given that students learned the basic concepts of

programming without coding lessons, the curriculum discussed in this chapter has a potential to promote

technology literacy for students with limited access to technology. Bringing qualified curricula into the

school with under-served groups, teachers and leaders can minimize squandering resources while

maximizing the effects of tablet uses.

To improve current design, future research can include: 1) attention to the social context of learning that

predicts how and when peer group may be beneficial for learning and 2) embedding different types of

computational thinking practices, such as engineering thinking, debugging, and error detection skills.

Future studies can provide insights to leaders, policy makers, and teachers to apply computational

thinking in multiple domains and recognize the utility of tablets in a range of applications.

First, tablet-implemented instructions can set the place for productive peer interaction. Much of the use of

technological tools in the classroom is social as they are recognized as symbolic artifacts and mediated by

social groups and cultural values (Moll, 2014). Theoretical and empirical work on social cognition reports

that peer interaction may promote cognitive restructuring in significant ways (Mayer, 1988). Furthermore,

Kafai and Quinn (2013) argued that building and remixing published artifacts in a programming

classroom encourages collaboration and participation in a larger community. Group settings to provide a

diversity of interaction while programming can provide young students with alternative perspectives

promoting reshaping ides or understandings programming knowledge as they become exposed to multiple

solutions in a community.

Secondly, the classroom implements various types of instructional approaches to practice computational

skill. One of the strategies to encourage computational thinking skill that may be appropriately integrated

into existing subject domains and curricula is debugging, or systematic error detection. This form of

computational thinking skill involves a highly complex and dynamic process to search for issues within

an imperfect solution, and to achieve an overall task goal (Carver & Klahr, 1986; Law, 1998). In

education, debugging presents a valuable learning opportunity for cognitive skills development, including

problem solving, metacognitive skills, logical reasoning, and persistence (National Research Council,

2005; Holbert, & Wilensky, 2011; Goulet & Slater, 2009). This research study has focused on students‟

development of debugging skills as one of the computational perspectives involved, of which

mechanisms are heavily dealt with in the field of computer science but ignored in education sector. Future

research could therefore extend on this study and target the specific development of debugging skills

within the educational domain, particularly in the mathematics and science content areas. Young students

could construct their knowledge of computational thinking in the form of error correction by engaging in

a step-by-step decomposed problem-solving procedure (e.g., debugging code) within coding activities.

CONCLUSION

Although novel technology can attract student attention, the way novel technology is integrated into

teaching and learning determines the success of educational technology. Prior research has already noted

the importance of teachers to design appropriate curriculum and implement it within appropriate

technology for student learning (Looi, Wong, So, Seow, Toh, Chen, Zhang, Norris, & Soloway, 2009).

For instance, a $1.3 billion project by Los Angeles Unified School District to distribute iPads with

preloaded digital curriculum to all students ended up demanding a refund from Apple without significant

improvement in student outcomes (Blume, 2015, Jan 12). A follow-up study (American Institutes for

Research, 2014) revealed that the iPads were used as a newer version of whiteboards without new

instructional methods being created, and thus, failed to improve student learning. This example shows

that pedagogy should come first before technology to ensure learning gains for successful technology

integration. As discussed in this chapter, incorporating physical activities that are familiar to children to

embody computational perspectives as a kernel of STEM learning, in one way in which curriculum

instruction may be changed while helping children to learn better with technology.

One obstacle in adopting tablets to classrooms is that the curriculum accompanying tablets tends to be

limited to mere delivery of information via technology. Moreover, this content focuses on abstract

concepts that are not grounded on meaningful contexts, which students can easily relate with. Therefore,

developing curriculum based on where students can simulate their cognitive process with actions bound to

social, cultural, and physical contexts can overcome the hurdles by facilitating young students to learn

abstract concepts. Findings from the current study are promising because students appeared to have

acquired necessary skills for programming and improved general cognitive skills without requiring

specific instruction specific to programming. In addition, coherent curriculum design that integrates both

mathematics and programming concepts not only reduced students‟ barriers to learn new concepts, but

also allowed students to actively construct knowledge with the given programming application.

Another challenge is that administrators and leaders are not ready to help teachers establish a culture that

values risk taking, promotes exploration, and celebrates innovation when adopting technology in

classrooms (Schrum, Galizio, & Ledesma, 2011). Rather than solely relying on teachers to adopt

technology, collaboration between school districts and teachers to establish rigorous student-centered

activities can overcome these challenges. This chapter suggests physical activities through which students

can practice computational perspectives that may help them improve content learning as well as develop

computational thinking strategies when accompanied with iPad use in the classroom.

REFERENCES

Abrahamson, D., & Howison, M. (2010). Embodied artifacts: coordinated action as an object-to-think-

with. Paper presented at the annual meeting of the American Educational Research Association,

Denver, CO.

Abrahamson, D, & Lindgren, R. (2014). Embodiment and embodied design. In R. K. Sawyer (Ed.), The

Cambridge handbook of the learning sciences (2 ed., pp. 358-376). Cambridge: UK: Cambridge

University Press.

Abrahamson, D., & Trninic, D. (2015). Bringing forth mathematical concepts: signifying sensorimotor

enactment in fields of promoted action. ZDM, 47(2), 295-306.

Aho, A. V. (2012). Computation and computational thinking. The Computer Journal, 55(7), 832-835.

Amer, H., & Ibrahim, W. (2014). Using the iPad as a pedagogical tool to enhance the learning experince

for novice programing students. Paper presented at the Global Engineering Education Conference

(EDUCON), 2014 IEEE.

American Institutes for Research (2014). Evaluation of the common core technology project: Interim

report. Washington: DC: Margolin, J., Haynes, E., Heppen, J., Reudel, K., Meakin, J., Hauser, A.,

… Hubbard, A.

Anderson, J. R., & Lebiere, C. (1998) The atomic components of thought. Mahwah, NJ: Erlbaum

Aspen Institute Task Force on Learning and the Internet. (2014). Learner at the center of a networked

world. Washington, DC: The Aspen Institute.

Bamberger, J., & DiSessa, A. (2003). Music as embodied mathematics: A study of a mutually informing

affinity. . International Journal of Computers for Mathematical Learning(8), 123–160.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is Involved and what

is the role of the computer science education community? ACM Inroads, 2(1), 48-54.

Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617-645.

doi:10.1146/annurev.psych.59.103006.093639

Barsalou, L. W. (2010). Grounded Cognition: Past, Present, and Future. Topics in Cognitive Science, 2(4),

716-724. doi:10.1111/j.1756-8765.2010.01115.x

Barsalou, L. W., Niedenthal, P. M., Barbey, A. K., & Ruppert, J. A. (2003). Social embodiment.

Psychology of Learning and Motivation, 43, 43-92.

Berland, M., & Wilensky, U. (2015). Comparing Virtual and Physical Robotics Environments for

Supporting Complex Systems and Computational Thinking.Journal of Science Education and

Technology, 24(5), 628-647.

Bers, M. U. (2007). Project InterActions: A multigenerational robotic learning environment. Journal of

Science Education and Technology, 16(6), 537-552.

Bers, M. U. (2008). Blocks to robots: Learning with technology in the early childhood classroom (p. 154).

New York: Teachers College Press.

Bers, M. U. (2008). Civic identities, online technologies: From designing civics curriculum to supporting

civic experiences. Civic life online: Learning how digital media can engage youth, 139-160.

Beals, L., & Bers, M. U. (2009). A developmental lens for designing virtual worlds for children and youth.

International Journal of Learning and Media, 1(1), 51-65.

Bers, M. U. (2010). Beyond computer literacy: supporting youth's positive development through

technology. New directions for youth development, 128, 13-23.

Bers, M. U. (2010). The TangibleK Robotics program: Applied computational thinking for young

children. Early Childgood Research & Practice, 12(2).

Bers, M. U. (2012). Designing digital experiences for positive youth development: From playpen to

playground. Oxford University Press.

Black, J. B. (2007). Imaginary Worlds. In. MA Gluck, JR Anderson & SM Kosslyn (Eds.), Memory and

mind (pp. 195-208): Mahwah, NJ: Lawrence Erlbaum Associates.

Black, J. B. (2010). An embodied/grounded cognition perspective on educational technology New Science

of Learning (pp. 45-52): Springer.

Black, J. B., Segal, A., Vitale, J., & Fadjo, C. L. (2012). Embodied cognition and learning environment

design. Theoretical foundations of learning environments, 2, 198-223.

Blume, H (2015, Jan 12). L.A. Unified‟s iPad program plagued by problems early, review says. Retrieved

from http://www.latimes.com/local/education/la-me-ipad-report-20150113-story.html

Bowers, L., Huisingh, R., & LoGiudice, C. (2005). TOPS 3 elementary. Linguisystems: East Moline, IL.

Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of Learning.

Educational Researcher, 18(1), 32-42.

Burke, Q. (2012) The markings of a new pencil: Introducing programming-as-writing in the middle

school classroom. Journal of Media Literacy Education, 4(2), 121-135.

Bybee, R. W. (2014). NGSS and the Next Generation of Science Teachers. Journal of Science Teacher

Education, 25(2), 211-221. doi:10.1007/s10972-014-9381-4

Carver, S. M., & Klahr, D. (1986). Assessing children's Logo debugging skills with a formal model.

Journal of Educational Computing Research, 2(4),487-525.

Chang, C., & Biswas, G. (2011). Design engaging environment to foster computational thinking. Paper

presented at the World Conference on Educational Media and Technology 2011, Lisbon, Portugal.

http://www.editlib.org/p/38274

Chang, K. E., Sung, Y. T., & Lin, S. F. (2006). Computer-assisted learning for mathematical problem

solving. Computers & Education, 46(2), 140-151.

Clements, G. N. (1985). The geometry of phonological features. Phonology, 2(01), 225-2

http://www.editlib.org/p/38274

Clements, D. H. (1999). The future of educational computing research: The case of computer

programming. Information Technology in Childhood Education Annual, 1999(1), 147-179.

Clements, D. H., & Battista, M. T. (1989). Learning of geometric concepts in a Logo environment.

Journal for Research in Mathematics Education, 20(5), 450-467. Retrieved from

http://www.jstor.org/stable/749420 .

Clements, D. H, & Gullo, D. F. (1984). Effects of computer programming on young children's cognition.

Journal of Educational Psychology, 76(6), 1051-1058.

Cognition and Technology Group at Vanderbilt (1990). Anchored instruction and its relationship to

situated cognition. Educational Researcher, 19 (6), 2-10.

Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the crafts of

reading, writing, and mathematics. In Resnick L. B. (Ed.), Knowing, learning, and instruction:

essays in honor of Robert Glaser (pp. 453-494). Hillsdale, NJ: Lawrence Erlbaum Associates,

Publishers.

Croft, W., & Cruse, A. (2004). Cognitive linguistics: Cambridge University Press.

Dede, C., Mishra, P., & Voogt, J. (2013). Working Group 6: Advancing computational thinking in 21st

century learning. Paper presented at the EDUsummIT.

Dede, C. (2010). Comparing frameworks for 21st century skills. 21st century skills: Rethinking how

students learn, 20, 51-76.

Derry, S.J., & LaJoie, S.P. (1993). A middle camp for (un)intelligent instructional computing:An

introduction. In S.P. LaJoie & S.J. Derry (Eds.), Computers as cognitive tools. Hillsdale, NJ:

Lawrence Erlbaum Associates.

DiSessa, A. (2000). Changing minds. Computers, learning, and liter acy.

Einhorn, S. (2012). Micro-Worlds, Computational Thinking, and 21st Century Learning. white paper.

Logo Computer Systems Inc.

Fadjo, C. L. (2012). Developing Computational Thinking Through Grounded Embodied Cognition.

Columbia University. Retrieved from http://www.editlib.org/p/117391

Fadjo, C. L., Lu, M., & Black, J. B.. (2009). Instructional Embodiment and Video Game Programming in

an After School Program. Paper presented at the World Conference on Educational Media and

Technology 2009, Honolulu, HI, USA. http://www.editlib.org/p/32064

Fadjo, C. L., Hallman Jr, G., Harris, R., & Black, J. (2009, June). Surrogate embodiment, mathematics

instruction and video game programming. InProceedings of World Conference on Educational

Multimedia, Hypermedia and Telecommunications 2009 (pp. 2787-2792).

Felleisen, M., & Krishnamurthi, S. (2009). Viewpoint Why computer science doesn't

matter. Communications of the ACM, 52(7), 37-40.

Feurzeig, W, & Papert, S. (2011). Programming-languages as a conceptual framework for teaching

mathematics. Interactive Learning Environments, 19(5), 487-501.

http://www.jstor.org/stable/749420
http://www.editlib.org/p/117391
http://www.editlib.org/p/32064

Feurzeig, W., Papert, S. A., & Lawler, B. (2011). Programming-languages as a conceptual framework for

teaching mathematics. Interactive Learning Environments, 19(5), 487-501.

Fischer, U., Moeller, K., Cress, U., & Nuerk, H.-C. (2013). Interventions supporting children‟s

mathematics school success: A meta-analytic review. European Psychologist, 18(2), 89.

Fryer, W. A. (2014). Hopscotch Challenges: Learn to Code on an iPad! Publications Archive of Wesley

Fryer, 1(1).

Fullan, M. (2007). The new meaning of educational change. New York: Teachers College Press.

Gallese, V., & Lakoff, G. (2005). The brain's concepts: The role of the sensory-motor system in

conceptual knowledge. Cognitive neuropsychology, 22(3-4), 455-479.

Gibbs, R. W. (2005). Embodiment and cognitive science: Cambridge University Press.

Glenberg, A. M. (2008). Toward the integration of bodily states, language, and action. Paper presented at

the Embodied grounding: social, cognitive, affective, and neuroscientific approaches.

Glenberg, Arthur M. (2010). Embodiment as a unifying perspective for psychology. Wiley

Interdisciplinary Reviews: Cognitive Science, 1(4), 586-596.

Glenberg, A. M., Gutierrez, T., Levin, J. R., Japuntich, S., & Kaschak, M. P. (2004). Activity and

Imagined Activity Can Enhance Young Children's Reading Comprehension. Journal of

Educational Psychology, 96(3), 424.

Glenberg, A. M., & Kaschak, M. P. (2002). Grounding language in action. Psychonomic Bulletin &

Review, 9(3), 558-565.

Goulet, D. V. & Slater, D. (2009). Alice and the introductory programming course: An Invitation to

Dialogue. Information Systems Education Journal, 7(50).

Grover, S., & Pea, R. (2013). Computational Thinking in K–12: A Review of the State of the Field.

Educational Researcher, 42(1), 38-43. doi:10.3102/0013189x12463051

Harris, J., Mishra, P., & Koehler, M. (2009). Teachers‟ technological pedagogical content knowledge and

learning activity types: Curriculum-based technology integration reframed. Journal of Research

on Technology in Education, 41(4), 393-416.

Holbert, N.R, & Wilensky, U. (2011). Racing Games for Exploring Kinematics: A Computatoinal

Thinking Approach. Paper presented at AERA 2011.

Hossain, M, & Robinson, M. (2012). How to Motivate US Students to Pursue STEM (Science,

Technology, Engineering and Mathematics) Careers. Online Submission.

Hu, W. (2012). „Math that Moves: Schools Embrace the iPad‟. The New York Times. 4 Jan 2011.

Available online: http://www.nytimes.com/2011/01/05/education/05tablets.html

Johnson, M., & Lakoff, G. (2002). Why cognitive linguistics requires embodied realism. Cognitive

linguistics, 13(3), 245-264.

Jona, K., Wilensky, U., Trouille, L., Horn, M, Orton, K., Weintrop, D., & Beheshti, E. (2014).

Embedding computational thinking in science, technology, engineering, and math (CT-STEM).

Paper presented at the future directions in computer science education summit meeting, Orlando,

FL.

Jonassen, D. H., & Reeves, T. C. (1996). Learning with technology: Using computers as cognitive tools.

In D. H. Jonassen (Ed.), Handbook of research for educational communications and

technology (1st ed.).

Jonassen, D.H. & Land S.M. (2000). Theoretical foundations of learning environments. Mahwah, NJ:

Lawrence Erlbaum Associates.

Kafai, Y.B. & Burke, Q. (2013). Computer programming goes back to school: Why and what K-12

schools need to know. Phi Delta Kappan, 95(1), 61-65.

Kazakoff, E.R. (2014). Toward a theory-predicated definition of digital literacy for earlychildhood.

Journal of Youth Development – Bridging Research and Practice (Special Issue: Media and

Youth), 9(1), 41-58.

Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to

western thought: Basic books.

Lankshear, C. & Knobel, M. (2006) New literacies: Everyday practices and classroom learning, 2nd

edition. Maidenhead: Open University Press.

Lauricella, A., Barr, R., & Calvert, S. (2008). Emerging computer skills: Influences of young children's

executive functioning abilities and parental scaffolding techniques. Paper presented at

International Communication Association Conference, Montreal, Canada.

Law, L. C. (1998). A situated cognition view about the effects of planning and authorship on computer

program debugging. Behaviour & Information Technology, 17(6), 325-337.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., . . . Werner, L. (2011). Computational

thinking for youth in practice. ACM Inroads, 2(1), 32-37. doi:10.1145/1929887.1929902

Lindgren, R. (2014). Getting into the cue:Embracing technology-facilitated body movements as a starting

point for learning. In Victor. R. Lee (Ed.), Learning Technologies and the Body:Integration and

Implementation in Formal and Informal Environment: Routledge.

Lindgren, R, & Johnson-Glenberg, M. (2013). Emboldened by embodiment: Six precepts for research on

embodied learning and mixed reality. Educational Researcher, 42(8), 445-452. doi:DOI:

10.3102/0013189X13511661

Link, T., Moeller, K., Huber, S., Fischer, U., & Nuerk, H. (2013). Walk the number line – An embodied

training of numerical concepts. Trends in Neuroscience and Education, 2(2), 74-84.

doi:http://dx.doi.org/10.1016/j.tine.2013.06.005

Liu, J., & Wang, L. (2010). Computational Thinking in Discrete Mathematics. Paper presented at the

2010 Second International Workshop on Education Technology and Computer Science.

http://dx.doi.org/10.1016/j.tine.2013.06.005

Looi, C., Wong, L., So, H., Seow, P., Toh, Y., Chen, W., Zhang, B., Norris, C., & Soloway, E. (2009).

Anatomy of a mobilized lesson: Learning my way. Computers and Education, 53, 1120-1132.

Matarić, M. J., Koenig, N., & Feil-Seifer, D. (2007). Materials for enabling hands-on robotics and STEM

education. AAAI spring symposium on robots and robot venues: resources for AI education.

Mayer, R. E. (1988). Teaching and learning computer programming: Multiple research perspectives.

Routledge.

Mayer, R. E., Dow, G., & Mayer, S. (2003). Multimedia learning in an interactive self-explaining

environment: What works in the design of agent-based microworlds? Journal of Educational

Psychology, 95, 806–813.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2013). Learning computer science concepts with

Scratch. Computer Science Education, 23(3), 239-264.

Moll, L. C. (2014). L. S. Vygotsky and education. London: Routledge

Motiwalla, L. F. (2007). Mobile learning: A framework and evaluation. Computers & Education, 49(3),

581-596.

Murray, O., & Olcese, N. (2011). Teaching and Learning with iPads, Ready or Not?” TechTrends:

Linking Research and Practice to Improve Learning. 55(6), 42-48.

National Research Council. (2005). Systems for state science assessment. Committee on Test Design for

K-12 Science Achievement. Wilson, M. R., & Berthenthal, M. W. (Eds.). Center for Education,

Division of Behavioral and Social Sciences and Education. Washington DC: The National

Academics Press.

National Science Board. (2010). Expert panel discussion on preparing the next generation of STEM

innovators. Retrieved from https://www.nsf.gov/nsb/publications/2010/nsb1033.pdf

Niedenthal, Paula M, Barsalou, Lawrence W, Winkielman, Piotr, Krauth-Gruber, Silvia, & Ric, François.

(2005). Embodiment in attitudes, social perception, and emotion. Personality and social

psychology review, 9(3), 184-211.

Paek, S. (2012). The impact of multimodal virtual manipulatives on young children's mathematics

learning. (Doctoral dissertation) Retrieved from ProQuest Dissertations & Theses Global

database (3554708 Ed.D.).

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas: Basic Books, Inc.

Papert, S. (1987). Computer criticism vs. technocentric thinking. Educational researcher, 16(1), 22-30.

Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer programming. New

Ideas in Psychology, 2(2), 137-168. doi:http://dx.doi.org/10.1016/0732-118X(84)90018-7

Pea, R. D. (1985). Integrating human and computer intelligence. In E. L. Klein (Ed.), New directions for

child development: No. 28, Children and computers (pp. 75–96). San Francisco: Jossey Bass.

Perkovic, L., & Settle, A. (2010). Computational Thinking across the Curriculum: A Conceptual

Framework. College of Computing and Digital Media Technical Report, 10-001.

https://www.nsf.gov/nsb/publications/2010/nsb1033.pdf
doi:http://dx.doi.org/10.1016/0732-118X(84)90018-7

Piaget, J. (1968). Quantification, conservation, and nativism. Science, 162(3857), 976-979.

doi:10.1126/science.162.3857.976

Price, S., & Rogers, Y. (2004). Let‟s get physical: The learning benefits of interacting in digitally

augmented physical spaces. Computers & Education,43(1), 137-151.

Resnick, M., Martin, F., Sargent, R., & Silverman, B. (1996). Programmable Bricks: Toys to Think

With. IBM Systems Journal, 35(3-4), 443-452.

Resnick, M. (2007, June). All I really need to know (about creative thinking) I learned (by studying how

children learn) in kindergarten. In Proceedings of the 6th ACM SIGCHI conference on Creativity

& cognition (pp. 1-6). ACM.

Resnick, M., Rusk, N., & Cooke, S. (1999). Technological fluency and the representation of

knowledge. High technology and low-income communities: Prospects for the positive use of

advanced information technology, 263-286.

Rideout, V. J., Foehr, U. G., & Roberts, D. F. (2010). Generation M 2: Media in the lives of 8-18 year

olds. Menlo Park, CA: Kaiser Family Foundation.

Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual understanding and

procedural skill in mathematics: An iterative process. Journal of educational psychology, 93(2),

346.

Rogers, Y. and Price, S. (2004). Extending and augmenting scientific enquiry through pervasive learning

environments. Children Youth and Environments. 14(2), 67-83.

Rogoff, B., Goodman Turkanis, C., & Bartlett, L. (2001). Learning together: Children and adults in a

school community. New York: Oxford University Press.

Salomon, G., Perkins, D. N., & Globerson, T (1991). Partners in cognition: Extending human intelligence

with intelligent technologies. Educational Researcher, 20, 2-9.

Sawyer, R. K. (2006). Introduction: The new science of learning. In R. K. Sawyer (Ed.) Cambridge

handbook of the learning sciences (pp.1-16). New York: Cambridge University Press.

Scaffidi, C., Shaw, M., & Myers, B. (2005). Estimating the Numbers of End Users and End User

Programmers. Proceedings of the IEEE Symposium on Visual Languages and HumanCentric

Computing, pp. 207-214.

Scardamalia, M., & Bereiter, C. (2006). Knowledge building. The Cambridge.

Scardamalia, M. (2001). Getting real about 21st century education. The Journal of Educational Change,

2, 171-176.

Scardamalia, M., & Bereiter, C. (2006). Knowledge building. The Cambridge.

Schrier, K. (2006). Using augmented reality games to teach 21st century skills. Conference proceedings,

ACM Siggraph Educators Program, Boston, MA.

Schrum, L., Galizio, L. M., & Ledesma, P. (2011). Educational leadership and technology integration: An

investigation into preparation, experiences, and roles. Journal of School Leadership Journal of

School Leadership, 21, 241-261.

Segal, Ayelet. (2011). Do gestural interfaces promote thinking? Embodied interaction: Congruent

gestures and direct touch promote performance in math. Columbia University.

Shute, V. J., & Psotka, J. (1996). Intelligent tutoring systems: Past, present, and future. In D. Jonassen

(Ed.), Handbook of research for educational communications and technology (pp. 570-600). New

York, NY: Macmillan.

Smith, Linda, & Gasser, Michael. (2005). The development of embodied cognition: Six lessons from

babies. Artificial life, 11(1-2), 13-29.

Squire K., & Klopfer E (2007) Augmented reality simulations on handheld computers. Journal of

Learning Science. 16(3), 371–413.

The White House, Office of the Press Secretary. (2009). Educate to innovate [Press release]. Retrieved

from https://www.whitehouse.gov/the-press-office/president-obama-launches-educate-innovate-

campaign-excellence-science-technology-en

Van Hiele, P. M. (1986). Structure and insight: A theory of mathematics education.

Voogt, J., Erstad, O., Dede, C., & Mishra, P. (2013). Challenges to learning and schooling in the digital

networked world of the 21st century. Journal of Computer Assisted Learning, 29(5), 403-413.

doi:10.1111/jcal.12029

Voskoglou, M. G., & Buckley, S. (2012). Problem solving and computational thinking in a learning

environment. arXiv preprint arXiv:1212.0750.

Wilson, A. D., & Golonka, S. (2013). Embodied Cognition is Not What You Think It Is. Frontiers in

Psychology, 4. doi:10.3389/fpsyg.2013.00058

Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625-636.

doi:10.3758/BF03196322

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-36.

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of

the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 366(1881),

3717-3725.

Wing, J. M. (2011). Computational thinking. Paper presented at the VL/HCC.

Wenglinsky, H. (2005). Using technology wisely: The keys to success in schools. New York: Teachers

College Press.

Wenger, E. (1987). Artificial Intelligence and Tutoring Systems: Computational and Cognitive

Approaches to the Communication of Knowledge. Los Altos, CA: Morgan Kaufmann Publishers,

Inc.

http://myweb.fsu.edu/vshute/pdf/shute%201996_d.pdf

Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., & Korb, J. T. (2011). Introducing computational

thinking in education courses. Paper presented at the ACM Special Interest Group on Computer

Science Education, Dallas, TX.

ENDNOTES

1
 http://www.cs.cmu.edu/~CompThink/

2
 news article published on 1.31.2012 on Spotlight on Digital Media and Learning.

http://spotlight.macfound.org/featured-stories/entry/programming-with-scratch-jr-when-it-comes-to-screen-time-

and-young-kids/

http://spotlight.macfound.org/featured-stories/entry/programming-with-scratch-jr-when-it-comes-to-screen-time-and-young-kids/
http://spotlight.macfound.org/featured-stories/entry/programming-with-scratch-jr-when-it-comes-to-screen-time-and-young-kids/

