
ORIGINAL RESEARCH

Introducing Computational Thinking to Young
Learners: Practicing Computational Perspectives
Through Embodiment in Mathematics Education

Woonhee Sung1 • Junghyun Ahn1 • John B. Black2

Published online: 28 July 2017
� Springer Science+Business Media B.V. 2017

Abstract A science, technology, engineering, and mathematics-influenced classroom

requires learning activities that provide hands-on experiences with technological tools to

encourage problem-solving skills (Brophy et al. in J Eng Educ 97(3):369–387, 2008;

Matarić et al. in AAAI spring symposium on robots and robot venues: resources for AI

education, pp 99–102, 2007). The study aimed to bring computational thinking, an

applicable skill set in computer science, into existing mathematics and programming

education in elementary classrooms. An essential component of computational thinking is

the ability to think like a computer scientist when confronted with a problem (Grover and

Pea in Educ Res 42(1):38–43. doi:10.3102/0013189X12463051, 2013). Computational

perspectives (Berland and Wilensky in J Sci Educ Technol 24(5):628–647. doi:10.1007/

s10956-015-9552-x, 2015) refer to the frame of reference programmers or computer sci-

entists adopt when approaching a problem. The study examined the effects of taking

computational perspectives through various degrees of embodied activities (i.e., full vs.

low) on students’ achievement in mathematics and programming. The study employed a 2

(full vs. low embodiment) 9 2 (with vs. without computational perspective taking) fac-

torial condition to evaluate four learning conditions from a combination of embodiment

and computational perspective-taking practice. The results from this experimental study

(N = 66 kindergarten and first graders) suggest that full-embody activities combined with

the practice of computational perspective-taking in solving mathematics problem improved

& Woonhee Sung
Ws2345@tc.columbia.edu

Junghyun Ahn
Ja2178@tc.columbia.edu

John B. Black
Black@tc.columbia.edu

1 Department of Mathematics, Science and Technology, Teachers College, Columbia University, 525
W. 120th Street, New York, NY 10027, USA

2 Department of Human Development, Teachers College, Columbia University, 525 W. 120th Street,
New York, NY 10027, USA

123

Tech Know Learn (2017) 22:443–463
DOI 10.1007/s10758-017-9328-x

http://orcid.org/0000-0002-5530-1965
http://dx.doi.org/10.3102/0013189X12463051
http://dx.doi.org/10.1007/s10956-015-9552-x
http://dx.doi.org/10.1007/s10956-015-9552-x
http://crossmark.crossref.org/dialog/?doi=10.1007/s10758-017-9328-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10758-017-9328-x&domain=pdf

mathematics understanding and programming skills as demonstrated in Scrath Jr. among

novice young learners. Moreover, the practice of using a computational perspective sig-

nificantly improved students’ understanding of core programming concepts regardless of

the level of embodiment. The article includes recommendations for how to make the

computational thinking process more concrete and relevant within the context of a standard

curriculum, particularly mathematics.

Keywords Computational thinking � Embodied cognition � Elementary

education � Programming � Mathematics � Computational perspectives � STEM

1 Introduction

Recent technological advancements in science, technology, engineering, and mathematics

(STEM) learning have raised questions among researchers and educators about how to

support children’s STEM learning using these new technologies. Since STEM concepts are

shared across science, mathematics, and engineering, attention should be paid to funda-

mental problem-solving skills that are applicable to STEM domains.

Wing’s (2006) influential article, which introduced the concept of computational think-

ing, ignited passionate debate about the aims and priorities of STEM education in K-12

contexts. The notion that computational thinking is a fundamental thinking skill in K-12

education is not new to the 21st century. In the 1970s, Papert (1972) described computation

as the fundamental ingredient of educational innovation and went on to create LOGO pro-

gramming, which turns abstract and distant computation concepts into concrete instruments.

Consequently, programming education, an essential way to teach and demonstrate compu-

tational thinking, gained traction in K-12 education in the United States.

Since then, many scholars have discussed the cognitive benefits and outcomes from

learning programming and its relation to other subject areas such as mathematics (Feurzeig

et al. 2011; Kurland and Pea 1985; Papert 1972, 1980).While there are different views on the

mental activities engaged by programming and their expected educational benefits (Pea and

Kurland 1984),Wing’s (2006) view is in line with that of Pea and Kurland (1984), who stated

that ‘‘through learning to program, children are learning much more than programming, far

more than programming facts … children will acquire powerfully general higher cognitive

skills such as planning abilities, problem-solving process itself’’ (p. 138). This belief is

consistent with computational thinking in the 21st century, defined as ‘‘thinking involving

solving problems, designing systems, and understanding human behavior, by drawing on the

concepts fundamental to computer science’’ (Wing 2006, p. 33).

With the rapid rise of programming instruction in K-12 education, students are

increasingly exposed to programming tools at an early age, with high expectations for

game design or programming outcomes in educational settings. To date, studies of stu-

dents’ learning of computational concepts and thinking skills have employed programming

languages such as Scratch (Burke 2012; Resnick et al. 2009), Hopscotch (Fryer 2014), and

tangible programming with the use of physical blocks (Kazakoff and Bers 2012) in K-6

settings, focusing on how to improve programming skills through the use of diverse tools

rather than on applying programming concepts or computational thinking in other STEM

subjects.

However, in elementary education, the fluency of using game and programming soft-

ware or the ability to design games is limited, and the use of tools is regulated in formal

education. Thus, finding ways to foster computational thinking and to incorporate

444 W. Sung et al.

123

computer programming into existing K-12 curricula is considered to be critical in recent

years. Along the same lines, Lye and Koh (2014) pointed out the lack of intervention

approaches that study factors encouraging students’ use of computational thinking and

the transfer effects on other skills that can be applied across nonprogramming domains.

Pea and Kurland (1984) expressed this concern, emphasizing the importance of organizing

learning experiences to lead students to new ideas and opportunities to build their own

understanding of computational concepts rather than focusing on what skills to teach.

Berland and Wilensky (2015) coined the term computational perspectives to refelect the

approach computer programmers or scientists take to solving a problem. Berland and

Wilensky (2015) pointed out that computational thinking focuses on the use of technical

skills to do programming whereas computational perspectives enable learners to apply

‘‘computation across domains that are not necessarily computer scientific’’ (p. 3).

If learning activities are carefully designed to embed computational perspectives, stu-

dents can engage computational thinking skills in other domains that are not computer

scientific. Thus, the purpose of the present study was to identify factors in designing

educational activities appropriate for elementary classrooms that can integrate computa-

tional thinking with non-computing domains. The study adopted an embodied approach

rooted in the premise that bodily activities interacting in a perceived physical world

support the learning of abstract concepts (Barsalou 2008; Glenberg 2008, 2010; Wilson

2002). Alimisis (2013) introduced embodied approach as an innovative way to introduce

STEM-related activities for younger children.

The authors investigated the effects of two factors, embodied activity and computational

perspective-taking practice integrated in mathematics learning: (1) full-embody (whole

body movement) versus low-embody (hand gestures) and (2) computational perspective-

taking practice versus without taking computational perspectives. These interventions rely

on students’ physical and cognitive activities that are plugged into mathematics learning

contexts, not on technological tools, to address the current shortage of resources in STEM

topics among underserved groups (Matarić et al. 2007). Thus, the study sought to identify

effective factors for designing hands-on learning activities that enhance mathematics and

computational thinking skills for underrepresented minority students. By adopting

embodied cognition and a computational perspective in the learning activities, the study

aimed at proposing a curriculum that lowers dependence on technological tools while

maximizing students’ participation in their learning process.

The proposed curriculum is expected to inform educators and researchers on how to

design and implement grade-appropriate programming in the K-12 education. Specifically,

based on the findings, we offer suggestions on how to make the computational thinking

process more concrete and relevant within the context of a standard curriculum, particu-

larly mathematics, so students can apply this thinking skill in STEM fields such as pro-

gramming and robotics.

2 Theoretical and Empirical Background

2.1 Embodied Approach

To truly engage a child’s interest in STEM education, experiential, hands-on education has

long been recognized as superior for learning new material by conveying real-world

meaning to abstract knowledge (Matarić et al. 2007). Based on the premise that cognitive

Introducing Computational Thinking to Young Learners… 445

123

processes are deeply related to bodily activities in the physical world, multiple research

areas support the claim that embodiment is a powerful learning approach in learning

abstract domains (Barsalou 2008; Barsalou et al. 2003). In particular, the connection

between knowledge representation and the bodily states are emphasized in embodied

cognition (Barsalou 2008; Glenberg 2008, 2010; Wilson 2002; Wilson and Golonka 2013).

Based on the belief that kinesthetic interactions grounded in concepts lead to conscious

thinking and more concrete experiences, embodied cognition has been discussed as an

innovative way to introduce abstract concepts such as mathematics, robotics, science

concepts, or programming for children (Alimisis 2013). Particularly in elementary STEM

classrooms, the focus is on learner-centered and constructionist approaches to design

motivating and engaging activities. Embodied cognition recognizes the importance of

learners participating with the physical world through active interaction to construct

conceptual metaphors emerging from concrete sensorimotor experiences (Abrahamson and

Howison 2010; Abrahamson and Trninic 2015; Bamberger and DiSessa 2003).

Importantly, research studies share the assumption that cognition is grounded in the

sensorimotor activity of our bodies; thus, expanding the body’s physical interaction within

conceptually grounded environment provides ‘‘fertile soil onto which we can lay the seeds

of new learning’’ (Lindgren 2014, p. 40). Therefore, an embodied approach is a valuable

resource to learn abstract and symbolic concepts or literacies that are unfamiliar to young

learners, such as programming languages, mathematics, and technology. For example,

Fadjo (2012) evaluated different types of embodiment in programming contexts. Fadjo

(2012) asked students to physically enact predefined scenarios and coding sequences,

which he referred to as a form of direct embodiment. Learners embody themselves as

agents executing coding commands, taking the perspective of a robot or virtual character

following coding. Surrogate embodiment is also a type of embodiment; however, here

learners manipulate an external surrogate, not their own bodies. In Fadjo’s (2012) study,

direct embodiment had a significant effect on developing programming skills, especially

conditional sequences whereas surrogate embodiment provided a unique opportunity

for the instruction of arithmetic topics during video game design (Fadjo et al. 2009a, b).

Thus, in our study, the dynamic environment allowing physical interactions grounded in

the target concept became the key factor and employed direct embodiment (learners

engaged their own bodies) and surrogate embodiment (learners manipulated an external

surrogate without engaging their own bodily movement).

2.2 Level of Embodiment

Several research studies have found evidence of the relationship between the embodied

approach and STEM content learning. For example, in a study about solving gear prob-

lems, Schwartz and Black (1996) argued that spontaneous hand gestures helped learners

imagine the correct movement of the gears by physically instantiating mental models. This

line of research has continued with the development of digital devices and touchable

screens. Before incorporating the haptic channel feedback, Chan and Black (2006) found

that students who were able to directly manipulate the animation using multimodal rep-

resentation actively participated in forming mental models. The haptic channel using a 2-D

force feedback stick indicated that students experiencing 2-D force feedback through a

joystick outperformed students without 2-D force feedback (Hallman et al. 2009).

Further, Huang et al. (2011) achieved consistent results when using a 3-D force feed-

back joystick that provided a full range of movement, which a 2-D joystick is not capable.

That is, when learning the law of conservation of energy, the use of a 3-D force feedback

446 W. Sung et al.

123

provided an embodied experience that led to better construction of mental models and

learning outcomes of abstract physics concept among younger learners. These findings

suggest that a higher level of feedback engagement supports perceptual experience among

learners by providing concrete simulations that help them understand abstract physics

concepts. When learners’ bodily movement was deeply grounded in simulations, their

performance on an immediate post-test and near transfer test improved (Huang et al. 2011),

showing that their mental model was strengthened and became more flexible at adapting as

the level of control over the simulation and the movement involved expanded.

Recent studies (e.g., Johnson-Glenberg et al. 2014) support this claim by showing that

learning activities involving a higher level of embodiment lead to a greater chance of

retrieval and retention. Johnson-Glenberg et al. (2014) compared the learning gains of

students who were physically swinging an object versus students clicking the mouse on a

computer simulation about centripetal force. In the immediate post-test, all students

demonstrated learning gains; however, significant learning gain in physics knowledge was

reported only on the follow-up test of students from the high-embodied learning condition.

The authors concluded that the students in the latter condition showed better retrieval than

the low-embodied group, who demonstrated decreased knowledge.

When learning contents with rich visuospatial properties, such as counting, numerical

magnitude, or number line, the high-embodied condition provides benefits from acting on a

visual-kinesthetic interface (Abrahamson and Howison 2010; Bamberger and DiSessa

2003). Thus, the high-embodied condition in this study involved full body movement with

a larger-size number line whereas learners in the low-embodied condition used their hands

with a number line drawn on a piece of paper the same size as the testing material.

3 Computational Thinking and Computational Perspective

Computational thinking is mentioned as an essential skill for the twenty first century,

giving learners a different framework for visualizing and analyzing problems (Einhorn

2011). Wing (2006) described computational thinking as a set of thinking skills, habits, and

approaches that are integral to solving problems and designing systems from a scientist’s

perspective. Her vision provided a springboard to a more comprehensive approach to

designing and developing computational thinking in K-12 education. The effort to bring

computational thinking in childhood education began back in the 19800s by Papert (1980),

although it was called programming education rather than computational thinking. Papert

(1980) advocated for programming education through LOGO programming, which pro-

vided a constructive programming environment to improve children’s procedural thinking

and mathematics understanding (Clements and Battista 1989). After the advent of visual

programming tools (i.e., Scratch, Scratch Jr., Hopscotch), robotics (i.e. LEGO Wedo or

Mindstorm), and tangible programming bricks, attention has been paid to the use and

function of tools for computational thinking development in K-12 education (Lye and Koh

2014). For example, computer programming tools developmentally appropriate for chil-

dren were found to be beneficial for young learners’ cognitive, problem-solving, and

sequencing skills (Bers 2008, 2010; Clements and Sarama 2002; Kazakoff and Bers 2012;

Lee et al. 2011). In addition, programming experiences with tangible robots or virtual

sprites have been found to improve the development of domain knowledge as well as skills

described as computational thinking. Little attention has been paid to the design of learning

procedures that computational thinking can be exhibited without technology tools.

Introducing Computational Thinking to Young Learners… 447

123

Moreover, computational thinking is not only related to the programming domain but also

to problem-solving practices requiring a specific mode of thinking that computer scientists

or programmers demonstrate.

The National Research Council (NRC) highlighted mathematics and computational

thinking as essential practices for K-12 science and engineering education (NRC 2012).

Furthermore, the International Society for Technology in Education (ISTE) and the

Computer Science Teachers Association (CSTA) developed an operational definition of

computational thinking as algorithmic thinking to formulate problems with a tool and

organizing and representing data through abstraction with the use of simulation (ISTE

2011). Although there is no widely agreed-upon definition of computational thinking in

K-12 settings, various interpretations suggest that computational thinking can be infused in

other subject domains by designing learning tasks that engage core mental processes of

computational thinking.

In response to this necessity, this study explored what type of instructional activities can

support thinking-doing, not just doing. Therefore, the authors designed interventions that

implemented the computational mode of thinking in the context of mathematics (number

line estimation, numeracy, and arithmetics) to guide students’ experience. This mode of

thinking is based upon Berland and Wilensky’s (2015) definition of computational per-

spectives, which emphasizes the way computer programmers think when approaching a

problem, through a logical, analytical, and constructive lens.

Programming is a tool that alters learners’ viewpoint as a user to a programmer who

answers the question of ‘‘how would I make the machine to solve this problem?’’ by

providing commands to the machine recursively (Wing 2008). This ‘‘necessarily explicit

nature of programming’’ (Papert 1980; Pea and Kurland 1984, p. 142) enables students to

practice a computational perspective. However, for novice learners, especially younger

elementary students, learning to use programming language may require developmental

reorganization in understanding programming constructs, tool functions, and, more

importantly, the computational perspective. Concerns about programming education

among novice learners were discussed by Pea and Kurland (1984), who asked, ‘‘How can

we organize learning experiences so that in the course of learning to program students are

confronted with new ideas and have opportunities to build them into their own under-

standing of the computer system and computational concepts? What component mental

processes are engaged in programming activities?’’ (p. 140).

The current study was guided by these questions to design effective learning activities

that incorporate the computational perspective in non-programming domains as a means of

equipping students with problem-solving skills that can be transferred to programming

tasks. Thus, the interventions were designed to practice computational thinking without the

programming application, but in the mathematics domain. Participants experienced the

computational perspective in the general problem-solving task and were provided with a

programming task that required the application of computational concepts acquired from

the activities.

3.1 Computational Thinking in Mathematics

With the goal to foster an application of this mode of thinking, we chose mathematics as

the content area to exercise the computational perspective. Mathematical ability is often

viewed as a core factor in predicting students’ ability to learn computer programming and,

thus, is required for that area of study (Pea and Kurland 1984). Mathematical thinking is

closely related to computational thinking because solving a mathematical problem is a

448 W. Sung et al.

123

process of construction (Feurzeig et al. 2011) that requires an analytic problem-solving

perspective, which is unique and fundamental to computer programmers or scientists

(Berland and Wilensky 2015). Studies using LOGO programming in the 19800s indicated
that programming activities with young students facilitated learning the relationship

between numerical magnitude and length estimation of a number line (Clements and

Battista 1989; Hughes and Macleod 1986; Robinson and Uhlig 1988). Thus, the learning

activities of this study added ‘‘concrete’’ and ‘‘analytical’’ instances of reasoning that are

inherent in computational thinking to mathematics problem solving, particularly number

sense and number line estimation.

4 Embodied Activity Incorporating Practice From a Computational
Perspective

Many cognitive scientists have studied how bodily action affects conceptual development

and, in turn, proposed models explaining how learning abstract concepts benefit from

concrete embodied experiences. The design of the current study adopted an embodied

approach and computational perspectives for learning mathematical concepts and engaging

computational thinking in a programming context targeting young learners.

Research studies verify that learning activities involving a high level of embodiment

lead to a higher chance of retrieval and retention than using low-embody activities such as

hand movements (Johnson-Glenberg et al. 2014). These findings suggest that a greater

degree of bodily engagement supports the perceptual experiences of learners by providing

concrete experiences.

In this study, the authors investigated different degrees of embodiment (full vs. low) as

the first factor influencing mathematics and programming performance. In terms of how to

design learning activities that incorporate the computational perspective into a mathe-

matics problem-solving activity, the design was based on the conceptual framework of

embodiment in formal educational settings, called instructional embodiment within STEM

content (Black et al. 2012; Fadjo et al. 2009a, b).

The current study employed two forms of instructional embodiment from the conceptual

framework introduced by Fadjo (2012), direct embodiment (DE) and surrogate embodi-

ment (SE). DE is the physical enactment of predefined scenarios or sequences that contain

explicit and implicit cues for movement (Fadjo 2012). This was applied in role-play

activities that engaged the students’ bodily movement without involving a surrogate but

consisted of moving their bodies to execute the problem-solving steps. SE, in turn, is a type

of physical enactment where the learner controls and manipulates the movement of an

external surrogate, such as a virtual character or physical object (human) (Fadjo 2012). The

authors found conceptual similarity between surrogate embodiment and the computational

perspective in the sense that manipulating a surrogate resembles the thought processes of a

programmer. Operating a surrogate requires students to display explicit knowledge in the

form of articulation to provide commands to manipulate the surrogate. SE requires students

to imagine the expected performance of a surrogate and transform the movement

description into a form of commands to manipulate the surrogate, which is a peer learner in

this study. Therefore, students in the SE condition took the perspective of programmers,

which is defined as a core concept of a computational perspective. Finally, the study

divided participants into groups by full and low level of embodiment in combination with

Introducing Computational Thinking to Young Learners… 449

123

the use of computational perspectives, either employing a surrogate or not. Next, the

research design describes how the groups were defined.

5 Method

5.1 Participants

We examined the effects of embodied activity and computational perspective practice as

an instructional strategy in children’s development of early mathematics and programming

skills through experiencing computational perspectives in embodied activities. Participants

were 66 kindergarten and first-grade students (36 males, 30 females) enrolled in an after-

school coding program in two neighboring New York City public schools. Both ethnically

diverse schools consist of 25–50% Hispanic, 39–47% Black, 20% or less White, and less

than 6% Asian students. The percentage of economically disadvantaged students in the two

schools is 47 and 88%, respectively. The majority of study participants are Hispanic,

Black, or Asian, consistent with the prevailing ethnicity of their schools.

The students performed different types of embodied activities before programming on

the iPad-based Scratch Jr. The first task consisted of filling in a number line with equal

interval lengths on a floor grid (full-embody group) or on a paper (low-embody group).

Participants in the Computational Perspective Practice (CPP) group performed the role of

programmer, which involved (a) commanding a surrogate and (b) providing the procedural

steps for solving a problem in combination with bodily and hand movements. The par-

ticipants without CPP used bodily or hand movements to solve the problem without

communicating with peer surrogates.

5.2 Research Design

The purpose of the study was to examine the impact of embodied interaction with or

without CPP in children’s conceptual understanding in mathematics and programming.

The research question aims to evaluate the main effects of the degree of embodiment (full

vs. low) and the presence of CPP (surrogate role present vs. no role assigned) on students’

mathematics and programming learning. Thus, the study used intervention approaches

designed as a 2 9 2 factorial experiment (see Table 1) with two independent variables,

resulting in four experimental groups. Testing the effects of the four conditions from the

combination of the two independent variables helped uncover evidence on how different

types of learning conditions lead to different levels of understanding in mathematics and

programming.

Table 1 2 9 2 Factorial experimental groups

Computational perspective practice (CPP) Degree of embodiment

Full embodiment (Full
body)

Low embodiment (Low degree)

With CPP (Surrogate/commander role-
play)

Full with CPP Low with CPP

Without CPP (no roles assigned) Full without CPP Low without CPP (Control
group)

450 W. Sung et al.

123

The researchers randomly assigned three after-school coding classes into the four

conditions.

1. Full-embody activity with CPP through surrogate/commander role-play (full embodied

& surrogate/commander role-play)

2. Full-embody activity without CPP (full embodied & no commander role)

3. Low degree of embodied activity with CPP through surrogate/commander role-play

(low embodied & surrogate/commander role-play)

4. Low degree of embodied activity without CPP (control group)

Through embodied activity with CPP, students practiced (a) commanding a surrogate

and (b) providing the procedural steps to solve a problem in the domain of mathematics.

The level of bodily engagement was combined with the presence of CPP. Direct

embodiment with a high level of bodily movement activity (full without CPP) was

implemented in the form of role-playing, where students directly acted on the physical

numerical representation (a number line) to demonstrate the given tasks. Embodying

computational perspectives with a high level of bodily engagement (full with CPP) also

used physical representation, but students were asked to manipulate an external surrogate,

another student, to perform the given tasks.

The manipulation of a surrogate under embodiment within the CPP condition resembles

the concept of commanding as students manipulate sprites in Scratch Jr., which is intended

to be a unique characteristic of computational thinking skills as defined above. In order to

operate surrogates to complete a task, students need to provide the correct steps by

decomposing the given problem and then verbalizing the procedures required to solve the

problem. This series of thought processes was used with the presence of CPP. CPP required

students to verbalize unconscious movement, thereby making it conscious. This conscious

effort was maintained in the CPP condition with a low level of embodiment (low with

CPP), where students used hand drawings instead of bodily movement. A low level of

enactment without CPP (low without CPP) excluded both the effect of bodily engagement

and a computational perspective; thus, it served as the control condition.

5.3 Procedure

This experimental study was conducted over five sessions, 1 h per session, in two New

York City public elementary schools as part of their after-school curriculum.

5.3.1 Session 1 (Pre-test)

In the first week, a pre-test was administered. Participants completed a paper-based pretest,

measuring their prior knowledge with number line, counting, number ordering, addition,

subtraction, and magnitude comparison. Next, Scratch Jr. was introduced to allow students

to explore this unfamiliar software. No specific instruction on coding was provided, but

students were encouraged to figure out how the software worked.

5.3.2 Session 2 (Embodiment Intervention 1)

In week 2, three classes were divided into the four conditions, and the number line creation

activity began. The full-embody (with/without CPP) group created a number line on a floor

mat whereas the low-embody (with/without CPP) group created one with paper and pencil.

Students spent 30 min to create a line by placing the numbers zero to 10 using a

Introducing Computational Thinking to Young Learners… 451

123

‘‘measurement arrow stick,’’ which resembled the coding block used in Scratch Jr. The

full-embody group used a larger measurement block card whereas the low-embody group

used a smaller size suitable for the size of paper used. Then, across all four groups, the

students played with Scratch Jr. to complete a number line using programming blocks, as

shown in Fig. 1.

5.3.3 Session 3 (Embodiment Intervention 2)

After the first intervention, the four groups moved to the second phase of the intervention.

The second embodied activity also used a blank number line on the floor (for full-embody

group) and with paper and pencil (for low-embody group). Students were asked to perform

or draw how a simple equation (e.g., 2 ? 5 = ?) could be solved using a given blank

number line and a measurement stick. Using the ‘‘measurement arrow stick’’ (full-embody

group) or ‘‘measurement arrow card’’ (low-embody group), students were asked to either

physically move on the number line or draw on the paper-based number line to solve the

equation. After spending 30 min on this intervention, students completed a paper-based

post-test using the same format and content as the pre-test. A 15-min time limit was set for

completing the post-test for all four groups.

5.3.4 Session 4 (Scratch Jr. Programming)

After completing 2 weeks of embodied activities using number line estimation, addition,

and subtraction skills, students were asked to perform a transfer task using programming.

This novel task on the programming software Scratch Jr. required students to program two

sprites, a cat and a basketball, so that the cat would throw a ball into the basket (see Fig. 2).

Limited guidance was provided, and the same level of instruction was given to each group.

An hour was allowed to complete the task.

Fig. 1 First programming project of filling in a number line using programming blocks on Scratch Jr.

452 W. Sung et al.

123

5.3.5 Session 5 (Delayed Test)

Upon returning to the program after 1 week of vacation, students completed a delayed test

on number line estimation and number sense.

5.4 Data Sources

The materials used for the study consisted of paper-based pre-, post-, and delayed tests to

measure participants’ mathematics learning outcomes from unplugged activities in four

different conditions. Three dependent measures were administered to evaluate participants’

number line sense, addition, and subtraction skills, and two dependent measures were

observed from programming artifacts.

5.4.1 Pre- and Post-tests

The mathematics test included number line estimation, counting, addition, subtraction, and

numerical magnitude comparison. All items were developed by the researchers and

adapted from the New York State P-12 Common Core Learning Standards.1 A post-test,

which was identical to the pre-test, was administered after the embodied activity inter-

vention to measure improvements within and between groups. These paper-based tests

asked students to fill in the blank linear number line from 1 to 10 and answer questions

related to counting on number lines and addition skills. Number line estimation accuracy

was graded based on the Percent of Absolute Error (PAE), which calculates the discrep-

ancy between the estimated position and the target number presented, divided by the total

numerical range (Booth and Siegler 2008). The post-test included one additional item of

creating an unfamiliar number line from 0 to 8. Students at this age are mostly exposed to

the 10th unit and are, therefore, familiar with a number line ending with the 10th unit, such

as 10, 20, or 100. Since the study intended to investigate how students’ interval estimation

Fig. 2 Second programming project of applying the concept of addition using two sprites in Scratch Jr.

1 https://www.engageny.org/resource/new-york-state-p-12-common-core-learning-standards.

Introducing Computational Thinking to Young Learners… 453

123

https://www.engageny.org/resource/new-york-state-p-12-common-core-learning-standards

improves based on the linear measurement on a number line activity and procedural/

sequential thinking skills practices, the length of an unfamiliar number line was also tested.

For the additional number line estimation task, the slope value representing the linearity

other estimated number line was calculated and compared across groups.

5.4.2 Delayed Test

The delayed test consisted of two number line estimation tasks, addition, subtraction, a

position to number task (PN task), and a number to position task (NP task). The PN task

(Siegler and Opfer 2003) asks students to estimate the number that corresponds to the

position marked on a number line and the NP task shows a number for students to estimate

its position on a line.

5.4.3 Programming Skills

After two intervention sessions of embodied activities, participants completed program-

ming challenges by creating visual coding blocks in Scratch Jr. These programming

products were evaluated in the form of success scores and programming efficiency scores.

Considering the possible number of errors participants can make, a success score was

recorded for each sprite. For programming Cat, 0 (more than 3 errors), 1 (fewer than 2

errors), and 2 (complete success) was given. Programming Basketball was graded as 0

(more than 4 errors), 1 (2–3 errors), 2 (1 error), and 3 (complete success). Figure 3 shows

an example of efficient coding produced by students. When participants created more

sophisticated and efficient coding blocks by using addition, pattern recognition, and fluent

coding skills, one point was given for each strategy use.

Fig. 3 Example programming blocks of efficient coding

454 W. Sung et al.

123

6 Results

This study examined the impact of two factors, the degree of embodiment and the presence

of the computational perspective practice, and their combined impact. Learning outcomes

were measured in two domains: mathematics (number line sense and arithmetic skills) and

programming (correctness and efficiency). Students’ prior knowledge of mathematics

showed no difference among the groups F(3, 45) = .704, p = .555. Students had neither

prior experiences with the programming tool nor knowledge about programming concepts.

6.1 Posttest

A 2 9 2 ANOVA was conducted on the post-test. The degree of embodiment,

F(1,55) = 8.632, p = .005, partial g2 = .16, had a statistically significant impact on the

post-mathematics test. The full-embody group (n = 35, M = 8.56, SD = 0.57) scored

higher than the low-embody group (n = 24, M = 5.90, SD = 0.70). A one-way ANOVA

revealed that the difference in the post-test score between the control group, low-embody

without CPP (n = 14, M = 5.00, SD = 4.47), and the full-embody with CPP group

(n = 19, M = 8.63, SD = 2.79) was statistically significant, F(3,55) = 3.84, p = .01

(Table 2).

Total post-test scores showed significant differences between the high and low level of

embodiment; however, the number line estimation task (0–10) did not show differences

across groups (Fig. 4).

Another applied item estimation task was tested, in which students estimated the

position of 0 to 8 transformed into a slope value representing the linearity of an estimated

number line. The estimated position of 0 to 8 (y) should increase linearly with the actual

position (x) of 0 to 8 with a slope of 1.00. To examine how close the slope produced from

students in each group was to the perfect slope of 1.00, the deviation value between

students’ estimated number line slopes and a perfect value of 1.00 was calculated and

named Slope Error. A nonparametric Mann–Whitney test was performed because Levene’s

test failed to support the homogeneity of variance of the frequency data. The test indicated

that the slope error value was greater for the low-embody group (Mdn = 0.36) than for the

full-embody group (Mdn = 0.13), U = 98.50, p = .000 (Fig. 5).

Overall, our posttest analysis found that the full-embody group performed better than

the low-embody group. Moreover, the full-embody with CPP group achieved higher than

the low-embody without CPP group. The item estimating 0 to 8 on a line showed a lower

Table 2 Two-way analysis of variance on the posttest by degree of embodiment and CPP factor

Source SS df MS F Sig. Partial g2

Degree of embodiment 99.196 1 99.196 8.632 .005** .136

CPP 13.020 1 13.020 1.133 .292 .020

Degree of embodiment 9 CPP 09.714 1 09.714 .845 .362 .015

Error 632.021 55 11.491

Total 4114.00 59

R2 = .173, adj. R2 = .128

Design: Intercept ? Degree of embodiment ? CPP ? Degree of embodiment 9 CPP

* p\ .05, ** p\ .01

Introducing Computational Thinking to Young Learners… 455

123

Slope Error in the full-embody group whereas the low-embody group demonstrated a

larger error size.

6.2 Delayed Test

The delayed test examined number line estimation (0 to 12 and 0 to 6), arithmetic skills,

and position to number (PN task). In terms of the accuracy of the number line estimation,

the difference between each participant’s number line slope and a perfect slope of 1.00 was

calculated. A Mann–Whitney test comparing the error value indicated that the group with

CPP (Mdn = 0.27) had a significantly smaller error size than the group without CPP

(Mdn = 0.37), U = 185.00, p = .021. Considering the result of the post-test number line

estimation task and the applied item, the significance of the CPP factor in the delayed test

was remarkable.

For the PN task, the difference between the estimated number and the correct number

was calculated and converted to a score, with a higher value indicating a smaller error size.

A 2 9 2 ANOVA analysis indicated that both the degree of the embodiment factor,

Fig. 4 Post-test linearity of number line estimation: group median data. Slope of each group’s linearity is
defined as the slope of the linear (solid) line. PAE is defined as the distance from the dashed, diagonal line
(perfect linearity 1.0). The variance accounted for by the linear line of each group (R2) is .998 for full with
CPP, .997 for full without CPP, .993 for low with CPP and .994 for low without CPP

456 W. Sung et al.

123

F(1,43) = 8.258, p = .006, partial g2 = .16, and the presence of CPP, F(1,43) = 4.413,

p = .04, partial g2 = .09, had a statistically significant impact on PN task performance.

The full-embody group (n = 26, M = 4.69, SD = 1.69) had a higher score than the low-

embody group (n = 21, M = 2.95, SD = 2.03) and the group with CPP (n = 22,

M = 4.63, SD = 2.01) scored higher than the group without CPP (n = 25, M = 3.28,

SD = 1.86) (Table 3).

A one-way ANOVA post hoc test showed results that were consistent with the post-test;

that is, the full-embody with CPP group (n = 14, M = 5.14, SD = 1.83) significantly

outperformed the low-embody without CPP group (n = 13, M = 2.46, SD = 1.89), with

F(3,43) = 5.06, p = .004. A 2 9 2 ANOVA analysis on the delayed test total score

revealed significant results consistent with the PN task analysis for both factors, degree of

embodiment F(1,43) = 7.959, p = .007, partial g2 = .16, and the presence of CPP,

F(1,43) = 4.331, p = .04, partial g2 = .09. The full-embody group (n = 26, M = 6.69,

SD = 2.34) and the group with CPP (n = 25, M = 6.64, SD = 2.74) demonstrated better

understanding and knowledge retention than the low-embody group (n = 21, M = 4.38,

SD = 2.71) and the without CPP group (n = 25, M = 4.80, SD = 2.50).

Fig. 5 Applied number line item linearity: group median data

Introducing Computational Thinking to Young Learners… 457

123

6.3 Programming Accuracy and Efficiency

When investigating accuracy on the programming tasks, the significance of CPP was

observed F(1,62) = 18.438, p = .000, partial g2 = .23. The post hoc test indicated that the

full-embody with CPP group’s programming accuracy (n = 20, M = 3.00, SD = 1.56)

was significantly higher than that of the full-embody without CPP group (n = 21,

M = 1.33, SD = 1.11) with a mean difference of 1.66, p = .006. Within the low-embody

groups, the group with CPP (n = 11, M = 3.36, SD = 1.96) produced more accurate

programming than the low-embody group without CPP (n = 14, M = 1.64, SD = 1.73)

with a mean difference of 1.72, p = .037, with F(3,62) = 6.641, p = .001. Finally, the

programming accuracy score for full-embody with CPP and low-embody with CPP was

significantly higher than for full-embody without CPP and low-embody without CPP

(Table 4).

With regard to programming efficiency, a nonparametric Mann–Whitney test was used

because Levene’s test failed to support the homogeneity of variance of the frequency data.

The results indicated that the presence of CPP was significant whereas the impact of the

degree of embodiment was insignificant. Specifically, the with CPP group (M = 0.612,

Mdn = 0.00) showed significantly greater programming efficiency skills, U = 354.00,

p = .001, r = 0.40. A Kruskal–Wallis test was conducted to evaluate differences among

the four conditions and a significant result was observed v2 (3, n = 66) = 11.091,

p = .011. The full-embody with CPP group and the low-embody with CPP group showed a

higher mean rank than the groups without CPP.

Table 3 Two-way analysis of variance on the PN task by degree of embodiment and CPP factor

Source SS Df MS F Sig. Partial g2

Degree of Embodiment 26.908 1 26.908 8.258 .006** .161

CPP 14.379 1 14.379 4.413 .042* .093

Degree of Embodiment 9 CPP .273 1 .273 .084 .773 .002

Error 140.112 43 3.258

Total 910.00 47

R2 = .261, adj. R2 = .210

Design: Intercept ? Degree of embodiment ? CPP ? Degree of embodiment 9 CPP

* p\ .05, ** p\ .01

Table 4 Two-way analysis of variance on programming task scores by embodiment and CPP factor

Source SS Df MS F Sig. Partial g2

Degree of embodiment 1.743 1 1.743 .728 .397 .012

CPP 44.141 1 44.141 18.438 .000** .229

Degree of embodiment 9 CPP .011 1 .011 .005 .946 .000

Error 148.426 62 2.394

Total 528.000 66

R2 = .243, adj. R2 = .207

Design: Intercept ? Degree of embodiment ? CPP ? Degree of embodiment 9 CPP

* p\ .05, ** p\ .01

458 W. Sung et al.

123

Overall, the presence of CPP was significant for programming accuracy and efficiency,

regardless of the degree of embodiment. A more accurate and efficient programming

outcome was found in the full-embody with CPP and low-embody with CPP groups,

confirming the transfer of programming concepts learning through intervention activities.

7 Discussion

This experiment produced interesting findings and implications for further research.

Specifically, there were significant main effects for a greater degree of embodiment on

post-test numeracy, magnitude comparisons, applied number line estimation, and delayed

test items. Conversely, the presence of CPP was significant on the delayed test and pro-

gramming performance.

A significant impact of the embodied activities was found in basic numeracy abilities on

the post-test (i.e., addition, subtraction, number order, and magnitude comparisons), other

arithmetic problems, and number line estimation in the applied item, indicating that stu-

dents’ application of learned knowledge differed by group. When given the novel number

line in the applied and delayed test, students in the full-embody group demonstrated

improved arithmetic ability and more flexible understanding of the number line. These

results strengthen the belief that learners’ participation through active interaction within

the physical world promotes concrete sensorimotor experiences, which, in turn, support the

learning of abstract concepts (Abrahamson and Howison 2010; Abrahamson and Lindgren

2014; Bamberger and DiSessa 2003; Lakoff and Johnson 1999).

With regard to retention and transfer, results of the delayed test suggest differences in

number line linearity depending on the presence of CPP (Johnson-Glenberg et al. 2014).

Children who were asked to provide commands to a surrogate by decomposing steps to

solutions developed robust learning and improved their number line estimation skills.

Ericsson and Simon (1980) discussed the processes underlying verbalization, arguing that

it is a direct articulation or explication of information processing. The CPP requiring

students to produce concurrent verbalization to manipulate a surrogate forced them to form

an internal representation of the moves, distances, and number sense. Moreover, the full-

embody activity combined with CPP promoted transfer to novel number line, arithmetic,

and PN tasks whereas the low-embodied activity without CPP failed to do so.

In addition to the development of mathematics understanding, the main goal of this

study was to promote computational thinking, a fundamental cognitive skill for pro-

gramming learning that permeates the STEM world. While students in all groups received

minimum instruction about Scratch Jr. functions (e.g., coding block drag and drop, how to

navigate, and how to simulate), the impact of CPP on students’ programming accuracy and

proficiency was significant. The second programming task developed to measure pro-

gramming accuracy and proficiency skills was challenging for novice learners since diverse

solutions may be designed based on programming fluency and utilization of conditional

blocks. Programming accuracy and programming efficiency skills were significantly

affected by the presence of CPP. Regardless of the degree of embodiment, groups prac-

ticing computational perspectives demonstrated abstraction, sequential thinking, and pat-

tern recognition skills. Considering the students’ minimum prior knowledge about

programming and the limited guidance provided, their problem-solving skills with pro-

gramming concepts reflect the effectiveness of the learning activities. These results indi-

cate that taking the perspective that is unique to a computer programmer or a scientist

Introducing Computational Thinking to Young Learners… 459

123

(Berland and Wilensky 2015) exposed students to computational thinking such as task

decomposition, sequential thinking, procedural thinking, and commanding skills to operate

a surrogate. The explicit nature of CPP maximizes students’ understanding of number line,

numeracy, number sense, and programming concepts, thus leading to a robust under-

standing of mathematics and programming concepts, as discussed in Papert (1980) and Pea

and Kurland (1984).

In short, CPP-engaged embodied activities delivered before the introduction of the first

programming task promoted computational thinking that benefited mathematics as well as

programming learning. The authors find it possible to design coherent classroom activities

that effectively embed computational perspectives into the existing mathematics and

programming curricula in an interdisciplinary manner to improve students’, particularly

underrepresented groups, learning within both mathematics and programming.

8 Conclusion

This study produced important findings and implications for further research in the search

for an effective K-12 curriculum to foster computational thinking and programming skills

targeting underrepresented groups. If programming concept is combined with other

domains with computational perspectives, it can provide an effective setting for guiding

students’ cognitive processing to focus on how to think rather than on what to think, which

is fundamental to computational thinking (Clements and Gullo 1984).

Considering the characteristic of target learner group, the goal was not only to focus on

effective learning activities, but also to put more emphasis on how to support underrep-

resented groups or under-resourced schools. Thus, the study highlighted the importance of

activities students performed rather than relying solely on the use of programming

software.

When developing the interventions, the study aimed to lower dependence on techno-

logical tools and rely more on activities that can be easily plugged into real-world contexts.

In the present study, the programming activity was not part of the intervention, but served

as a measure of programming accuracy and proficiency. All participants received equal

opportunity and time to play on an iPad, meaning that the presence or quality of the tool

was not a distinguishing factor. Therefore, the significant differences found across groups

were due to differences in learning activities, highlighting the importance of appropriate

learning activities that are not vulnerable to the quality or quantity of technological tools.

Designing a learning environment that promotes explicit thinking processes is the key in

deciding how to introduce programming in early education and assist students in learning

to program. A learning environment where students engage full-body movements and CPP

leads to greater engagement and improved learning outcomes. Compared to introducing

digital tools without providing opportunities to develop learners’ own understanding of

programming concepts, it is more powerful to prepare students in appropriate learning

activities that support computational perspectives and practices and then expose them to

digital tools.

The proposed activities exhibit the potential that computational practices and per-

spectives can be developed through self-discovery. We propose that future research focus

on supporting students’ problem-solving skills in designing self-exploratory instructional

activities rather than teaching technical rules and skills. Moreover, it is necessary to extend

460 W. Sung et al.

123

the current pedagogical design and results from an after-school program to formal edu-

cational settings to inform computational education on a greater scale.

References

Abrahamson, D., & Howison, M. (2010). Embodied artifacts: coordinated action as an object-to-think with.
Denver, CO: In annual meeting of the American Educational Research Association.

Abrahamson, D., & Lindgren, R. (2014). Embodiment and embodied design. In R. K. Sawyer (Ed.), The
Cambridge handbook of the learning sciences (2nd ed., pp. 358–376). Cambridge: Cambridge
University Press. doi:10.1017/CBO9781139519526.022.

Abrahamson, D., & Trninic, D. (2015). Bringing forth mathematical concepts: Signifying sensorimotor
enactment in fields of promoted action. ZDM Mathematics Education, 47(2), 295–306.

Alimisis, D. (2013). Educational robotics: Open questions and new challenges. Themes in Science and
Technology Education, 6(1), 63–71.

Bamberger, J., & DiSessa, A. (2003). Music as embodied mathematics: A study of a mutually informing
affinity. International Journal of Computers for Mathematical Learning, 8(8), 123–160. doi:10.1023/
B:IJCO.0000003872.84260.96.

Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59(1), 617–645. doi:10.1146/
annurev.psych.59.103006.093639.

Barsalou, L. W., Niedenthal, P. M., Barbey, A. K., & Ruppert, J. A. (2003). Social embodiment. Psychology
of Learning and Motivation, 43, 43–92.

Berland, M., & Wilensky, U. (2015). Comparing virtual and physical robotics environments for supporting
complex systems and computational thinking. Journal of Science Education and Technology, 24(5),
628–647. doi:10.1007/s10956-015-9552-x.

Bers, M. U. (2008). Using robotic manipulatives to develop technological fluency in early childhood. In O.
N. Saracho & B. Spodek (Eds.), Contemporary perspectives on science and technology in early
childhood education, LAP 105–225. Greenwich, CT: Information Age Publishing Inc.

Bers, M. U. (2010). The TangibleK robotics program: Applied computational thinking for young children.
Early Childgood Research & Practice, 12(2), 1–20. Retrieved from http://ecrp.uiuc.edu/v12n2/bers.
html.

Black, J. B., Segal, A., Vitale, J., & Fadjo, C. (2012). Embodied cognition and learning environment design.
Theoretical Foundations of Learning Environments, 2, 198–223.

Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning.
Child Development, 79(4), 1016–1031.

Brophy, S., Klein, S., Portsmore, M., & Rogers, C. (2008). Advancing engineering education in P-12
classrooms. Journal of Engineering Education, 97(3), 369–387.

Burke, Q. (2012). The markings of a new pencil: Introducing programming-as-writing in the middle school
classroom. Journal of Media Literacy Education, 4(2), 121–135.

Chan, M. S., & Black, J. B. (2006). Direct-manipulation animation: Incorporating the haptic channel in the
learning process to support middle school students in science learning and mental model acquisition. In
Proceedings of the 7th International Conference on Learning Sciences (pp. 64–70). Bloomington, IN.

Clements, D. H., & Battista, M. T. (1989). Learning of geometric concepts in a Logo environment. Journal
for Research in Mathematics Education, 20(5), 450–467.

Clements, D. H., & Gullo, D. F. (1984). Effects of computer programming on young children’s cognition.
Journal of Educational Psychology, 76(6), 1051–1058.

Clements, D. H., & Sarama, J. (2002). The role of technology in early childhood learning. Teaching
Children Mathematics, 8(6), 340–343.

Einhorn, S. (2011). Micro-worlds, computational thinking, and 21st century learning.[White paper]
Retrieved from http://el.media.mit.edu/logofoundation/resources/papers/pdf/computational_thinking.
pdf.

Ericsson, K. A., & Simon, H. A. (1980). Verbal reports as data. Psychological Review, 87(3), 215–251.
Fadjo, C. L. (2012). Developing Computational Thinking through Grounded Embodied Cognition (Un-

published doctoral dissertation). Columbia University, NY.
Fadjo, C. L., Hallman Jr., G., Harris, R., & Black, J. B. (2009). Surrogate embodiment, mathematics

instruction and video game programming. Paper presented at the World Conference on Educational
Media and Technology, Honolulu, HI. http://www.editlib.org/p/31876.

Introducing Computational Thinking to Young Learners… 461

123

http://dx.doi.org/10.1017/CBO9781139519526.022
http://dx.doi.org/10.1023/B:IJCO.0000003872.84260.96
http://dx.doi.org/10.1023/B:IJCO.0000003872.84260.96
http://dx.doi.org/10.1146/annurev.psych.59.103006.093639
http://dx.doi.org/10.1146/annurev.psych.59.103006.093639
http://dx.doi.org/10.1007/s10956-015-9552-x
http://ecrp.uiuc.edu/v12n2/bers.html
http://ecrp.uiuc.edu/v12n2/bers.html
http://el.media.mit.edu/logofoundation/resources/papers/pdf/computational_thinking.pdf
http://el.media.mit.edu/logofoundation/resources/papers/pdf/computational_thinking.pdf
http://www.editlib.org/p/31876

Fadjo, C., Lu, M., & Black, J. B. (2009). Instructional embodiment and video game programming in an after
school program. Paper presented at the World Conference on Educational Media and Technology,
Honolulu, HI. http://www.editlib.org/p/32064.

Feurzeig, W., Papert, S., & Lawler, B. (2011). Programming-languages as a conceptual framework for
teaching mathematics. Interactive Learning Environments, 19(5), 487–501. doi:10.1080/
10494820903520040.

Fryer, W. A. (2014). Hopscotch challenges: Learn to code on an iPad!. Retrieved from http://publications.
wesfryer.com/index.php/archive/article/view/53.

Glenberg, A. M. (2008). Toward the integration of bodily states, language, and action. In G. R. Semin & E.
R. Smith (Eds.), Embodied grounding: Social, cognitive, affective, and neuroscientific approaches (pp.
43–70). New York: Cambridge University Press.

Glenberg, A. M. (2010). Embodiment as a unifying perspective for psychology. Wiley Interdisciplinary
Reviews: Cognitive Science, 1(4), 586–596.

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educa-
tional Researcher, 42(1), 38–43. doi:10.3102/0013189X12463051.

Hallman, G., Paley, I., Han, I., & Black, J. (2009). Possibilities of haptic feedback simulation for physics
learning. In Proceedings of world conference on educational multimedia, hypermedia and telecom-
munications (pp. 3597–3602). Honolulu, HI.

Huang, S. C., Vea, T., & Black, J. (2011). Learning classic mechanics with embodied cognition. In Pro-
ceedings of world conference on e-learning in corporate, government, healthcare, and higher edu-
cation (pp. 209–215). Chesapeake, VA.

Hughes, M., & Macleod, H. (1986). Using logo with very young children. In R. Lawler, B. du Boulay, M.
Hughes, & H. Macleod (Eds.), Cognition and computers: Studies in learning (pp. 179–219). Chich-
ester: Ellis Horwood.

International Society for Technology in Education. (2011). Operational definition of computational thinking
for K–12 education. Available at http://www.iste.org/docs/ct-documents/computational-thinking-
operational-definition-flyer.pdf?sfvrsn=2.

Johnson-Glenberg, M. C., Birchfield, D. A., Tolentino, L., & Koziupa, T. (2014). Collaborative embodied
learning in mixed reality motion-capture environments: Two science studies. Journal of Educational
Psychology, 106(1), 86–104.

Kazakoff, E., & Bers, M. (2012). Programming in a robotics context in the kindergarten classroom: The
impact on sequencing skills. Journal of Educational Multimedia and Hypermedia, 21(4), 371–391.

Kurland, D. M., & Pea, R. D. (1985). Children’s mental models of recursive logo programs. Journal of
Educational Computing Research, 1(2), 235–243.

Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to western
thought. New York: Basic Books.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., et al. (2011). Computational thinking for
youth in practice. ACM Inroads, 2(1), 32–37. doi:10.1145/1929887.1929902.

Lindgren, R. (2014). Getting into the cue: Embracing technology-facilitated body movements as a starting
point for learning. In V. R. Lee (Ed.), Learning technologies and the body: Integration and imple-
mentation in formal and informal environment (pp. 39–54). New York, NY: Routledge.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through
programming: What is next for K-12? Computers in Human Behavior, 41, 51–61. doi:10.1016/j.chb.
2014.09.012.

Matarić, M. J., Koenig, N., & Feil-Seifer, D. (2007). Materials for enabling hands-on robotics and STEM
education. In AAAI spring symposium on robots and robot venues: Resources for AI education (pp.
99–102). Stanford, CA.

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting
concepts, and core ideas. Washington, DC: The National Academies Press.

Papert, S. (1972). Teaching children thinking. Programmed Learning and Educational Technology, 9(5),
245–255.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic Books Inc.
Pea, R. D., & Kurland, D. M. (1984). On the cognitive effects of learning computer programming. New

Ideas in Psychology, 2(2), 137–168.
Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K., et al. (2009).

Scratch: Programming for all. Communications of the ACM, 52(11), 60–67.
Robinson, M. A., & Uhlig, G. E. (1988). The effects of guided discovery Logo instruction on mathematical

readiness and visual motor development in first grade students. Journal of Human Behavior and
Learning, 5, 1–13.

462 W. Sung et al.

123

http://www.editlib.org/p/32064
http://dx.doi.org/10.1080/10494820903520040
http://dx.doi.org/10.1080/10494820903520040
http://publications.wesfryer.com/index.php/archive/article/view/53
http://publications.wesfryer.com/index.php/archive/article/view/53
http://dx.doi.org/10.3102/0013189X12463051
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf%3fsfvrsn%3d2
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf%3fsfvrsn%3d2
http://dx.doi.org/10.1145/1929887.1929902
http://dx.doi.org/10.1016/j.chb.2014.09.012
http://dx.doi.org/10.1016/j.chb.2014.09.012

Schwartz, D. L., & Black, J. B. (1996). Shuttling between depictive models and abstract rules: Induction and
fallback. Cognitive Science, 20(4), 457–497.

Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation evidence for multiple
representations of numerical quantity. Psychological Science, 14(3), 237–250.

Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625–636.
doi:10.3758/BF03196322.

Wilson, A. D., & Golonka, S. (2013). Embodied cognition is not what you think it is. Frontiers in Psy-
chology, 4, 1–13. doi:10.3389/fpsyg.2013.00058.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. doi:10.1145/
1118178.1118215.

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of
the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 366(1881),
3717–3725.

Introducing Computational Thinking to Young Learners… 463

123

http://dx.doi.org/10.3758/BF03196322
http://dx.doi.org/10.3389/fpsyg.2013.00058
http://dx.doi.org/10.1145/1118178.1118215
http://dx.doi.org/10.1145/1118178.1118215

	Introducing Computational Thinking to Young Learners: Practicing Computational Perspectives Through Embodiment in Mathematics Education
	Abstract
	Introduction
	Theoretical and Empirical Background
	Embodied Approach
	Level of Embodiment

	Computational Thinking and Computational Perspective
	Computational Thinking in Mathematics

	Embodied Activity Incorporating Practice From a Computational Perspective
	Method
	Participants
	Research Design
	Procedure
	Session 1 (Pre-test)
	Session 2 (Embodiment Intervention 1)
	Session 3 (Embodiment Intervention 2)
	Session 4 (Scratch Jr. Programming)
	Session 5 (Delayed Test)

	Data Sources
	Pre- and Post-tests
	Delayed Test
	Programming Skills

	Results
	Posttest
	Delayed Test
	Programming Accuracy and Efficiency

	Discussion
	Conclusion
	References

