Psychological Science http://pss.sagepub.com/

Three-Dimensional Bilateral Symmetry Bias in Judgments of Figural Identity and Orientation Michael K. McBeath, Diane J. Schiano and Barbara Tversky
Psychological Science 1997 8: 217
DOI: 10.1111/j.1467-9280.1997.tb00415.x
The online version of this article can be found at: http://pss.sagepub.com/content/8/3/217

Published by: ©SAGE

http://www.sagepublications.com
On behalf of:

Association for Psychological Science

Additional services and information for Psychological Science can be found at:

Email Alerts: http://pss.sagepub.com/cgi/alerts
Subscriptions: http://pss.sagepub.com/subscriptions
Reprints: http://www.sagepub.com/journalsReprints.nav
Permissions: http://www.sagepub.com/journalsPermissions.nav

$$
\text { >> Version of Record - May 1, } 1997
$$

What is This?

THREE-DIMENSIONAL BLLATERAL SYMMETRY BIAS IN JUDGMENTS OF FIGURAL IDENTITY AND ORIENTATION

Michael K. McBeath, ${ }^{1}$ Diane J. Schiano, ${ }^{2}$ and Barbara Tversky ${ }^{3}$
${ }^{t}$ Kent State Universtity, ${ }^{2}$ Interval Research Corporation, and ${ }^{\text {S }}$ Stanford University

Abstract

The two experments reported explored a btas toward symmetry in judging identity and orientation of indeterminate twodimensional shapes Subjects viewed symmetric and asymmetric filled, random polygons and described "what each figure looks like" and its ortentatton Viewers almost unversally interpreted the shapes as silhouettes of bilaterally symmetric three-dimensional (3-D) objects This assumption of 3-D symmetry tended to constrain percelved vantage of the identified objects such that symmetric shapes were interpreted as straught-on views, and asymmetric shapes as profile or oblıque views Because most salient objects in the world are bilaterally symmetric, these findings are consistent with the view that assuming 3-D symmetry can be a robust heurstic for constraining onentation when identifying objects from indeterminate patterns

A fundamental problem of pattern recognition is that the set of possible interpretations of a given stımulus figure can be indefinitely large The problem is multiphed when two-dimensional (2-D) figures may be taken to represent projections of three-dimensional (3-D) objects of any shape and onentation in space, as is typically the case with proximal stimuh on the retina (Hochberg, 1978) Yet people are quite good at resolving this uncertainty, typically inferring 3-D shape accurately even with the minimal outline cues given by 2-D silhouettes (Hayward, in press, Kımıa, Tannenbaum, \& Zucker, 1995) In attemptıng to acheve comparable levels of performance, most pattern-recognition models attempt to constrain stimulus indeterminacy by invoking simplifying assumptions about the structure of the stimulus set A common approach is to explicitly limit allowable object shapes onentations, or dimensionality Thus many templatematching algorithms apply only to the recogntion of 2-D objects with characteristic axes of elongation that can be used to determine proper alignment (Bruce \& Green, 1990) Some template models require simple 2-D shapes (typically letters) comprising line segments of a specified width (Kahan, Pavidis, \& Bard, 1987) Filter-response matching systems typically make similar assumptions in the spatial-or temporal-frequency domain (Uttal, 1975) Some models of 3-D object recognition first constrain object onentation (e g, based on elongation cues). but still can account only for objects whose shapes can be easily decomposed into a predefined set of 3-D component elements (Biederman. 1985, Marr \& Nishthara, 1978)

The present article examines structural biases concerning object symmetry that humans may use to constrain stimulus indeter-

[^0]minacy in viewing and interpreting filled, random 2-D patterns, similar to silhouettes We first discuss the prevalence of symmetric objects and then explore how degree of figural symmetry can help establish object orientation and identity

SYMMETRY

Symmetry is a pervasive structural characteristic of 3-D objects in the world Virtually all hiving organisms have at least bilateral symmetry, typically about the vertical axis Some, like trees and flowers, also have additional symmetries The few exceptions to this rule, like lobsters and sole appear odd Animals exhibit a sexual preference for more symmetnc mates (Møller, 1992, Pennisi, 1995) Virtually all artfacts constructed for human use also possess an overall symmetry Symmetry confers greater balance and stability to artifacts, as well as greater compatibility with their users Although some objects, such as human faces, contain salient local asymmetries, global symmetry is typically still manntained with respect to major features such as the eyes, nose, and ears (Sackeim, Gur, \& Saucy, 1978) Simularly, although symmetry may be violated in the placement of internal features (e g, a car's steening wheel, or the heart in the human body), most objects mantain symmetry with respect to major external features (e g, the car's wheels and hood, the body's limbs and head) The prevalence of symmetry as a feature of notable objects in the world may contnbute to its perceptual sahence

Scientific study of the perception of symmetry dates back at least to the work of Mach (1897), who first demonstrated that viewers are more sensitive to distortuon of symmetry about the vertical than about the horizontal axis (the Goldmeier effect) This bias may reflect the preponderance of vertical symmetry in nature Recent experiments have confirmed and extended Mach's findings (Corballis \& Roldan, 1975, Palmer \& Hemenway, 1978) Gestalt psychologists placed great emphasis on symmetry, citing it as one of the fundamental perceptual principles of organization (Hochberg, 1978) Symmetry is characteristic of figures, not grounds (Attneave, 1971, Shepard, 1990) Symmetnc shapes are commonly judged as simpler and more regular than nonsymmetnic ones (Zusne \& Michaels, 1962), and their informational redundancy may promote more efficient encoding (Attneave, 1955, Barlow \& Reeves, 1979) Symmetry is a highly salient, attentiondrawing figural feature (Julesz, 1971) Indeed, viewers tend to exaggerate symmetry in encoding nearly symmetric 2-D figures This bias towards symmetry has been demonstrated with a vanety of figures, including polygons, dot patterns, and curves on graphs, under both perception and memory conditions (Freyd \& Tversky, 1984, Schiano \& Tversky, 1992, Tversky \& Schiano, 1989) Symmetry is commonly assumed in completing partially occluded
 pobhtorf (e
ber 2011

Three-Dimensional Symmetry Bias

ebeek, 1993) There is substantial evidence that it serves as a primary cue in determining the correspondence of successive positions in motion perception (Farrell \& Shepard, 1981, McBeath, 1990)

In previous research, symmetry has charactenstically been treated as a 2-D property of 2-D figures Even when projections of common objects in varying orientations are used as stımulh, the fact that degree of figural symmetry can be used as a cue to 3-D object onentation has been largely ignored (McMullen \& Farah, 1991) Such an approach does not seem to adequately acknowledge the importance and ubiquity of bilateral symmetry in people's experience of the world The goal of the present research was to extend the investigation of 2-D symmetry toward its utulity as a cue in inferring the onentation and identity of 3-D objects We suggest that viewers may use the prominent structural characteristic of vertical symmetry to constrain the indeterminacy problem in interpreting ambiguous or indeterminate 2-D patterns Specifically, if a projected image (or sılhouette) of a vertically symmetric 3-D object appears symmetric, it imphes a vantage point that cuts through the object's axis of symmetry (e g, a "straight on" view from in front, in back, above, or below) If the image appears asymmetric, it imphes a vantage point to the side or at an oblique angle with respect to the object's axis of symmetry (eg, a side or slanted view) Thus, a bias to use degree of figural asymmetry as a cue to stimulus onentation could help constrain interpretations of the projected object and simplify the identufication process Additional onentation-related biases (eg, toward top-up and forward-facing onentations) might serve to further constrain object identification Thus, in the present research, we treated symmetry not only as a 2-D feature of 2-D figures, but as a cue to 3-D object onentation in depth

In this article, we describe two experiments in which subjects viewed filled, random polygons varying in extent of vertical bilateral symmetry We examine the influence of figural symmetry on interpretation of stimulus onentation and identity Our hypothe-
sis was that viewers would exhubit a bias to interpret the stimulu figures as silhouettes of 3-D symmetric objects, with symmetnc polygons portraying straight-on views, and asymmetric polygons side or oblique views We note that in preliminary investigations we examined whether demand characteristics of this task might unduly encourage subjects to interpret the stimuli as symmetric 3-D objects (Schiano, McBeath, \& Chambers, 1994) We were concerned that instructing subjects to indicate the orientation of their interpretations might predispose them to describe the figures as objects with directionality We found that subjects reliably described the figures as symmetric 3-D objects nearly 90% of the time, independent of the type of instructions (1 e , even when instructed just to "describe the figures") In the present expenments, subjects were asked to both describe the figures and indicate orientation in order to facilitate accuracy of onientation coding In our prelıminary work, we also explored the issue of stımulus generalizability by varying complexity (number of polygon sides) Again we found a robust tendency for figures to be described as symmetric 3-D objects, independent of whether the stumuli had 9,18 , or 27 sides In the current research, we used 18 -sided stimuln, which produced a slightly more vaned array of object interpretations than did the 9 - and 27 -sided stimuli

EXPERIMENT 1

Method

Fifteen introductory psychology students at Stanford University participated in fulfillment of course requirements All subjects had normal or corrected vision and were not informed of the hypotheses being tested

Stımuli consısted of twelve 18 -sided random polygons (6 asymmetric and 6 symmetric), displayed with 64-by-64-pixel resolution in a computer-screen area spanning several inches Figure 1 illus-

Fig. 1. Generation of the stimulus figures For Experiment 1, asymmetric random polygons were created by connecting randomlength radn at equal angular intervals and then filling the intenor (a) Symmetric polygons were created by replacing the night halves of asymmetric polygons with reflections of their left halves (or vice versa) (b) In Experiment 2, three figures with intermediate degrees of imposed symmetry ($25 \%, 50 \%$, and 75% symmetric) were created for each asymmetric-symmetric polygon pair (0% and 100% symmetric) The intermediate figures were created by proportionally varying the lengths of radin, such that if a radial spoke was 18 units in the 0% symmetnc figure and 30 units in the 100% symmetnc figure, it would be 21,24 , and 27 units for the 25%,
 parr with 0% and 100% symmetry
rates the method of stimulus generation Each asymmetric polyon was created by choosing random numbers between 2 and 32 , which specified the lengths of radn at 18 equally spaced angular ntervals around a central point Adjacent radu were connected by line segments, and the central portion was filled Symmetric stumuli were produced by replacing the left halves of asymmetric stumuli with the mirror mage of the right halves (or vice versa), a vertical folding-over procedure described by Farrell and Shepard (1981) Figure 2 shows the 12 stumul, which were presented in random order on an Amiga 2000 computer

Subjects were instructed to press a key on the computer to initiate a trial, at which point a new stimulus figure was displayed

Asymmetric Symmetric

Fig. 2. Stumulus figures used in Experiment 1 (See the text for specfic examples of typical and atypical responses for the two sigures shown on the top row)

Subjects were told to decide what the figure looked like, decide its onentation or direction of facing, and rapidly type the interpretation The principal independent variables were percentage of descriptions that were symmetric 3-D objects and interpreted orientation Response tume (RT), defined as the tume elapsed between when the trial was unituted and when the first keystroke of the reply occurred, was also recorded Performance was selfpaced, and the task typically lasted about 15 min

Results and Discussion

Response coding

Responses for each figure were rated by three independent judges for presence or absence of object three-dimensionality and symmetry, and for orientation, if the interpretation was of a 3-D object Judges also indicated if the interpretation was of two or more objects silhouetted together and, if so, whether this configuration of objects contained an axis of symmetry that cut through the viewer (such as mirror images of dogs looking away from each other) These rare cases, accountung for less than 1% of the trials, were classified as straight-on views in accordance with their configural orientation of symmetry The majority vote of the judges was coded as the judged orientation Following are samples of typical and atypical responses and judged onentations for the representative parr of stimuli shown in the top row of Figure 2

- 18-sided asymmetric figure Typical Cartoon dog (side view facing right), laughing mouse (side view facing left) Atypical Distorted ax or tomahawk (side view facing nght)
- 18 -sided symmetric figure Typical Fighter plane (straight-on view facing up), man in sombrero (straight-on vew facing front) Atypical Tail fin of a bomb (straighton view facing down)

Perceived symmetry and ortentation

The principal analyses looked at the following two relationships First, we divided the stumuli by figural symmetry (symmetric vs asymmetric figures) and determined the percentages of descriptions rated as symmetric 3-D objects Second, we considered all figures that had symmetri 3-D interpretations and determuned the relationship between figural symmetry and interpreted orientation The first analysis showed that approxumately 90% of the figures were interpreted as symmetric 3-D objects, the presence versus absence of figural symmetry yielded no significant difference, $F(1,14)=095$, n s The second analysis indicated that interpreted onentation was almost entirely determined by figural symmetry Of the interpretations that were symmetric 3-D objects. 987% of the symmetric figures were judged as straght-on vews, whereas only 43% of the asymmetric figures were judged so, $F(1,14)=2,38551, p<0001$ Figural symmetry accounted for more than 99% of the variance in rated orientation These results are presented in Figure 3, together with those of two prehminary studies (\mathbf{A} and B) that examined effects of instructions (Schiano et al , 1994) The instructions for Studies A and B were, respectively. "Describe what the figure looks like" and "Describe the figure and its onentation" The consistency of results across studies demonstrates the robustness of the response October 6, 2011

Three-Dimensional Symmetry Bias

Fig. 3. Results of Expenment 1 and of two representative prelımınary studies (A and B) that tested effects of instructional set (Schiano, McBeath, \& Chambers, 1994) The graphs show (a) the percentage of symmetric three-dimensional (3-D) interpretations as a function of figural symmetry and (b) the percentage of interpretations seen from a straight-on vantage as a function of figural symmetry

RTs were logarithmically transformed to normalize the data RT to initiate a description was significantly faster for symmetric figures than for asymmetnc figures (logarthmic means of 82 s vs 120 s , respectively), $F(1,65)=801, p<01$ This result is consistent with several views that orientation alternatives are more constrained for symmetric than for asymmetric figures, that subjects perform a mental rotation or related transformation to align asymmetric figures with a straight-on view (Shepard \& Metzler, 1971), or that symmetric figures' redundancy makes them simpler to process (Attneave, 1955) RTs also yielded significant differences between subjects, $F(13,65)=447, p<001$. and marginal differences between the six pairs of figures, $F(5$, $65)=245, p<05$ The effect of stımulus figure indicates some rehability for the level of difficulty subjects have in deriving interpretations for particular shapes

These findings confirm that viewers almost unversally interpret indeterminately shaped random polygons as looking like silhouettes of symmetric 3-D objewsilwade syfmmatpessandionpu figures interpreted as straight-on views and asymmetric 9 gitrber as side or oblique views In Expenment 2, we extended this
inquiry to test if polygons with an intermediate degree of symme try are, on average, interpreted to be at an onentation intermedi ate to the orientations of fully symmetric and fully asymmetric figures

EXPERIMENT 2

Method

Stimulh with intermediate degrees of symmetry were created using the technique shown in Figure 1c Intermediate symmetry polygons contaned radı with lengths proportionally between the lengths in an asymmetnc-symmetnc stimulus parr This allowed the creation of continua each containing figures with five levels of imposed symmetry $(0 \%, 25 \%, 50 \%, 75 \%$, and $100 \%)$ Figure 4 shows the five stimulus continua used They were created from five asymmetric-symmetric polygon pairs used in Experiment 1 Five paper-and-pencil surveys that each contanned one figure from each stımulus continuum were created All five levels of imposed symmetry were represented on each survey, but no two figures on a survey were from the same continuum (to maintain independence of interpretations within a continuum) Thus, the analysıs for each continuum was a between-subjects design Subjects were instructed to describe each figure and to check off one of three boxes indicating interpreted onentation "straight-on." "slanted," or "direct side " Each of the five surveys was completed by 30 students, resulting in a total of 30 responses for each figure and 150 responses per contınuum Subjects were again

Fig. 4. Stimulus figures used in Expenment 2 Each of the five sets of figures vared along a five-step continuum of imposed figqualaymfint MEaen subjecPldescribed one figure from each of 4 Re five stumulus contunua (See the text for specific examples of typical and atypical responses for Continuum 1)
introductory psychology students at Stanford Umversity, had normal or corrected vision, and were unaware of the hypotheses being tested

Results and Discussion

Following are samples of typical and atypical responses for the five stimuli in Continuum 1, shown on the top row of Figure 4 Descriptions generally specified side or slanted views for asymmetric shapes, and increasingly specified a straight-on view as figural symmetry increased

- 0\% symmetric figure Typical Cartoon dog (side view facing nght), pelican with mouth open (slanted view facing left) Atypical Witch on broom (side view facing left)
- 25% symmetric figure Typical Barking dog (side view facing nght), flying bird (slanted view facing night) Atypical Map of Russia (stratght-on view facing front)

Fig. 5. Results of Experiment 2 Dotempeted onentation (reported angle of view) is plotted as a function of figuran syinf atay for (a) each of the five continua and (b) all continua combinefol

- 50% symmetric figure Typical Bird about to land (slanted view facing nght), head with hat (slanted view facing nght) Atypical Deformed star (straight-on vew facing front)
- 75% symmetric figure Typical Large bird with stretched wings (straight-on view facing front), man in sombrero (slanted view facing front) Atypical Finned torpedo (slanted view facing down)
- 100% symmetric figure Typical Man with sombrero (straighton view facing front), flying arrplane (straight-on view facing up) Atypical Eagle with wings spread sttting on the roof of a house (straight-on view facing front)

Responses in general were very similar to those found previously Once again, virtually all interpretations were symmetric 3-D objects Figure 5a shows the interpreted onentations for individual continua As predicted, degree of imposed symmetry in a figure was a highly significant indicator of interpreted onientation inear trend, $F(1,748)=22529, p<0001$ Figures with intermediate degrees of symmetry tended to be interpreted to be at intermediate onentations Differences between the continua were not significant, $F(4,748)=065$, the interaction between imposed symmetry and continuum was marginally significant, $F(16,748)=297, p<01$, and disappeared if Continuum 2 was not included Figure $5 b$ shows the data from all continua combined with the best fitting cubic spline curve The apparent nonlinear S-shaped falloff may indicate a tendency to interpret objects to be aligned more with viewer-centered axes than is specified by imposed degree of figural symmetry Alternatively, it may merely indicate that the method of imposing stimulus symmetry produced continua with nonlinear increments in perceived symmetry In any case, the overall pattern of results indıcates that extent of figural symmetry is highly predictive of interpreted onentation

GENERAL DISCUSSION

In two experiments, viewers were asked to describe filled, random 2-D shapes that were either vertically symmetric or asymmetric In the vast majonty of cases, the viewers interpreted both kinds of stimuli as silhouettes of 3-D, bilaterally symmetric common objects Symmetric figures were interpreted as objects aligned with the viewer and asymmetric figures as objects oriented obliquely or facing to the side These results are consistent with the use of symmetry as a cue to constrain object onentation and identification Given that so many of the objects that people perceive and interact with are bilaterally symmetnc or nearly so, the assumption of 3-D bilateral symmetry can serve as a simple yet powerful pattern-recognition heuristic, effectively constraining possible interpretations of dimensionality, onentation, and shape

Previous research on symmetry perception has focused primarily on recognition and classification of 2-D features in 2-D figures That research has shown that newers rapidly detect symmetry, especially bilateral symmetry (Bariow \& Reeves, 1979), and that they exhibit a bias to impose symmetry so that nearly symmetric figures are encoded as more symmetric than the onglnals (Freyd \& Tversky, 1984, Schiano \& Tversky, 1992, Tversky \& Schuano, 1989) The present findings suggest that the same principule equnato $9 b$ blaternarecogition Viewers appear to rapidly defectimplied 3-D symmetnes and to impose symmetry in their

Three-Dimensional Symmetry Bias

3-D interpretations of 2-D figures Earker research has shown that figural symmetry is an effective cue for distinguishing figure from ground because figures are more likely to be symmetric than are backgrounds (Attneave, 1971, Shepard, 1990) The present work extends this reasoning to three dimensions as well, suggesting that 3-D objects are more likely to be interpreted as symmetric than are backgrounds The assumption of symmetry gives clues not just to figurahty, but also to 3-D onentation and identuty

The assumption of symmetry has ecological validity There is little cost to incorrectly classifying most truly asymmetric objects, such as rocks, but substantial potential benefits to correctly classifying most genuinely symmetric or nearly symmetric objects, including life forms and many human artifacts For many such objects, symmetry reliably indicates important orientation information such as the direction they are facing and are most likely to move, or the direction indicative of aerodynamic stability (McBeath, 1990, McBeath, Monkawa, \& Kaiser, 1992) The assumption of symmetry also simplifies object recognition and representation Computationally, symmetric figures are easier to encode and require less storage space (Attneave, 1955, Julesz, 1971) Once the onentation of a symmetnc figure is determined, only half of it needs to be scanned and encoded Indeed, there is evidence that scanning of symmetnc figures is shortcut in this way (Locher \& Nodine, 1973) Thus, the assumption of 3-D bilateral symmetry can facilitate object representation in addition to object identafication

In the present studies, vewers assumed 3-D bilateral symmetry not just for symmetric and nearly symmetric figures, but for asymmetric ones as well Yet identifying the asymmetric figures took more time One interpretation is that viewers may mentally transform asymmetric shapes in search of a plausible vantage for a compatible symmetric 3-D object Results suggestive of mental transformations in object identification have been found for objects rotated in the picture plane (Jolicoeur, 1985, McMullen \& Farah, 1991), but the case of rotation about an object s vertical axis of symmetry has not been studied Common symmetric objects are readily recognized when shown at obhque perspectives In fact, the best perspective for recognizing a common object from a set of similar objects is an oblique or side perspective. possibly because it captures more of the distinguishing features of the objects (Palmer, Rosch, \& Chase, 1981) Our findings are consistent with viewers effectively performing a rotational transformation in which, on average, extent of mental rotation in depth is inversely proportional to degree of figural symmetry

SYMMETRY-SEEKING ALGORITHM

Substantial research has investigated the problem of deducing 3-D structure from a 2-D image when motion or stereo dispanty information is himited or unavailable (Marr, 1982, Marr \& Nishihara, 1978) One approach is to assume that sllhouetted edge contours continue smoothly into the third dimension, yelding an effective extrapolation of surfaces across silhouetted locations of 3-D space (Burbeck \& Pizer, 1995, Terzopoulos, Witkin, \& Kass,
 tion of line segments that occurs in viewing 2-D subjectivectobe
tours (Kanızsa, 1979) A concave edge on a silhouette typically indicates the presence of a surface that mantains concavity as it curves in depth toward or away from the viewer Similarly, a convex edge typically indicates a surface that maintains convexity as it curves toward or away from the viewer Reliance on this heunstic of edge-contour continuation would always lead to interpretations that have volume as well as bilateral symmetry (1 e , with a reflection through the picture plane) Such a "symmetryseeking" algonthm has been demonstrated in computer enhancement applications to create 3-D structures from 2-D images (Terzopoulos et al , 1987)

When viewers interpret indeterminately shaped figures as silhouettes of symmetric 3-D objects, a symmetry-seeking strategy may be used to help judge stımulus onentation (Vetter \& Poggio, 1994) Viewers may effectively "match up" opposite-sided appendages in determining possible orientations of 3-D bilateral symmetry that could produce the observed silhouette (Braunstein, 1971) The favored interpretation of orientation would result from the smallest rotation from a top-up frontal plane that allows undistorted symmetry Once favored onentation is determined, the set of possible object shapes becomes highly constrained, greatly simplifying the task of identification

The present research did not specifically test viewers' rules for determining object identity and onentation, but the interpretations that viewers provided are consistent with a symmetryseeking approach similar to the following

1 Assume a bilaterally symmetric 3-D object (or object set)
2 Begin search by favoring object interpretations with a vertical plane of symmetry (and perhaps other, related onentation constraints, e g, that "top is up")
3 Scan the figure for possible matching appendages (1 e , shape protuberances that approximate rotated or mirror images of each other)

"

Fig. 6. Typical interpreted axes of symmetry Viewers typically interpret the polygons as silhouettes of objects that have a nearvertical axis of symmetry They appear to scan the figures for possible matching appendages that can produce object symmetry through lateral rotation Two figures are shown in gray with dotted arrows indicating typical interpreted matching appendages and hatched surfaces indicating resultant planes of symmetry (a) Largely symmetrc figures result in planes of symmetry nearly pepen gicurar to Mepretureplanen (b) Largely asymmetric figures Feserf In planes of symmetry nearly parallei to the picture plane

Michael K McBeath, Diane J Schiano, and Barbara Tversky

4 Consider onentations that deviate more and more from the initual straight-on view Once a satisfactory symmetry match is achieved, constrain the interpreted plane of symmetry to contain the bisector points between matched appendage pairs
5 Assume smooth contunuation of convex and concave silhouette edges forward and backward into depth

6 Assume flattening in depth to the extent required so that smooth continuation of appendage surfaces does not occlude visible background at concave contours

Figure 6 shows some illustrative examples

Taken together, our findings suggest that the visual system may have evolved to exploit the salience and pervasiveness of vertical bilateral symmetry by effectively employing a symmetryseeking heuristic to constrain the stimulus indeterminacy problem in interpreting object orientation and identity

> Acknowledgments-This work was supported in part by National Science Foundation Research Grant BNS $85-11685$ and a grant from Interval Research Corporation We would like to thank the research assistants who helped collect, code, and judge the data reported here Anna Marie Medina Colin Tam, Lindsey Pederson and Terry Tulles at Stanford University and Lorann Fiore Yuichiro Nakai and Allen Goodman at NASA-Ames Research Center In addition, we thank Karen McBeath, Ken Chambers, John Khlstrom, Dale Klopfer, and an anonymous reviewer for editonal suggestions concerning this manuscript

REFERENCES

Attneave F (1955) Symmetry information and memory for patterns American Journal of Pivchologv 68, 209-222
Attneavc F (1971) Multistability in percepton Sciennfic American, 225(10) 62-71
Barlow H B \& Reeves B C (1979) The versatilty and absolute efferency of detecting mirror symmetry in random dot displays Vision Research 19 783-793
Biederman I (1985) Human image understanding Recent research and a theory Computer Vision, Graphics \& Image Processing 32 29-73
Braunstein ML (1971) Perception of rotation in figures with rectanguldr and trapezordal features Journal of Expermental Psychology 91(1) 25-29
Bruce V \& Green PR (1990) Visual perception phvsiology psychology and ecology (2nd ed) London Erlbaum
Burbeck C A \& Pizer SM (1995) Object representation by cores Iduntifying and representing primitive spatual regions Viston Research 35, 1917-1930
Corballıs MC \& Roldan, C E (1975) Detection of symmetry as a function of angular onentation Journal of Expermental Psychology Human Perception and Performance, 1 221-230
Farrell, J E , \& Shepard R N (1981) Shape onentation and apparent rotational motion Journal of Experumental Psychology Human Perception and Perfor mance 7, 477-486
Freyd, J \& Tversky B (1984) Force of symmetry in form perception American Journal of Psychology 97, 109-126
Hayward W G (in press) Effects of outhe shape in object recognition Joumal of Expermental Psychology Human Perception and Performance

Hochberg IE (1978) Perception. Englewood Cliffs NJ Prentice-Hall
Jenkins B (1983) Component process in the perception of bilaterally symmetne dot patterns Perception \& Psychophysics 34 433-440
Johtcoeur P (1985) The time to name disonented natural objects Memory \& Cognthon, 13 289-303
Julesz, B (1971) Foundatuons of cyclopean percepnon New York University Press
Kahan S Pavidis T \& Bard HS (1987) On the recognition of printed characters of any font and stze IEEE Transactoons on Pattern Analysus and Machune Intelligence PAMI 9 274-288
Kanizsa G (1979) Organuzation in viston Essays in Gestalt perception. New York Praeger
Kıma, B B Tannenbaum AR \& Zucker S W (1995) Shapes shocks and defor matons I The components of shape and the reaction-diffusion spece Interna tuonal Journal of Computer Viston, 15(3) 189-224
Locher P \& Nodine C (1973) Influence of stumulus symmetry on visual scanning patterns Perception \& Psychophysics, 13 408-412
Mach E (1897) The analysis of sensations Chicago Open Court
Mart D (1982) Viston. A computational invesngatton into the human representation and processing of visual information San Francisco W F Freeman
Marr D \& Nishihara H K (1978) Representation and recogntion of the spatial organsation of three-dimensional shapes Proceedings of the Royal Socuery of London B 200 269-294
McBeath MK (1990 April) The effect of object shape on the path of apparent motion Paper presented at the annual meeting of the Western Psychological Association Los Angeles
McBeath MK Morkawa K \& Kasser M (1992) Perceptual bias for forward facing motion Psychological Science 3 362-367
McMullen PA \& Farah M.J (1991) Viewer-centered and object-centered repre sentations in the recognition of naturalistic hne drawings Psychological Sa ence 2 275-277
Meller A P (1992) Female swallow preference for symmetrical male sexual orna ments Nature, 357 238-240
Palmer S \& Hemenway K (1978) Onentation and symmetry Effects of muluple rotational and near symmetnes Journal of Experimental Psychology Human Perception and Performance 4 691-702
Palmer S Rosch E \& Chase P (1981) Canonical perspective and the perception of objects In J Long \& A Baddeley (Eds) Attention and performance IX (pp 135-151) Hillsdale NJ Erlbaum
Pennsi E (1995) Not simple svmmetry Does it really matter if the nght ear is bigger than the left' Science News 147(3) 46-47
Sackem HA Gur RC \& Saucy MD (1978) Emotions are expressed more intensely on the left side of the face Science 202 434-436
Schuano D.J McBeath M \& Chambers K (1994 November) Orientation con straining heurstics for interpreting figures as 3 D objects Paper presented at the annual meeting of the Psychonomic Society St Lous MO
Schiano D J \& Tversky B (1992) Structure and strategy in encoding sumplified graphs Memory \& Cognution 20(1) 12-20
Shepard R N (1990) Mind sights Original visual tlusions ambiguities, and other anomalies with a commentary on the play of mund in perception and ant New York WH Freeman
Shepard, R N \& Metzler J (1971) Mental rotation of three-dimensional objects Sclence, 171, 701-703
Terzopoulos D Witkin A \& Kass M (1987) Symmetry seeking models and 3D object reconstruction International Journal of Computer Vision 1, 211-221
Tvarsky B \& Schiano D.J (1989) Perceptual and conceptual factors in distortions in memory for graphs and maps Journal of Experimental Psychology General, 118 387-398
Uttal W R (1975) An autocorrelation theory of form detectuon Hillsdale NJ Erlbaum
Vetter T \& Poggio T (1994) Symmetnc 3D objects are an easy case for 2D object recognition Spatial Viston, 8 443-453
Wagemans J Van Gool L Swinnen V \& Horebeek JV (1993) Highet-order structure in regulanty detection Viston Research, 33 1067-1088
Zusne L \& Michaels K M (1962) Geometnaty of visual form Percepnual and Motor Skills 14 147-154
(Received 8/14/95 Revision accepted 8/26/96)

This document is a scanned copy of a printed document. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material.

[^0]: Address correspondence to Michael K McBeath, Department of Psychology, Kent State Unversity, Kent DOW 44242 ded it mmebeathe kent edu

